FAM107A Inhibits the Growth, Invasion and Aerobic Glycolysis of LUAD Cells by Regulating CRYAB/PI3K/AKT.

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fei Ming, DaiPing Zhang
{"title":"FAM107A Inhibits the Growth, Invasion and Aerobic Glycolysis of LUAD Cells by Regulating CRYAB/PI3K/AKT.","authors":"Fei Ming, DaiPing Zhang","doi":"10.1007/s10528-024-11006-x","DOIUrl":null,"url":null,"abstract":"<p><p>Lung adenocarcinoma (LUAD) is characterized by its aggressive nature and resistance to treatment. FAM107A is a tumor suppressor gene that has been found to possess inhibitory effects in several cancers, but its role in LUAD remains unclear. This study investigated the role of FAM107A in regulating LUAD cell growth, invasion and aerobic glycolysis and also investigated the potential underlying mechanisms. Our findings revealed that FAM107A is significantly downregulated in LUAD, and its overexpression inhibited LUAD cell growth and invasion. Furthermore, FAM107A overexpression suppressed the anaerobic phase of carbohydrate metabolism in LUAD cells. Mechanistically, FAM107A regulated the CRYAB/PI3K/AKT signaling pathway, thereby inhibiting tumor progression, and similar findings were confirmed in our in vivo mouse model. In conclusion, FAM107A can suppress LUAD progression by regulating the CRYAB/PI3K/AKT pathway and aerobic glycolysis, indicating its potential as therapeutic target for LUAD.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-11006-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lung adenocarcinoma (LUAD) is characterized by its aggressive nature and resistance to treatment. FAM107A is a tumor suppressor gene that has been found to possess inhibitory effects in several cancers, but its role in LUAD remains unclear. This study investigated the role of FAM107A in regulating LUAD cell growth, invasion and aerobic glycolysis and also investigated the potential underlying mechanisms. Our findings revealed that FAM107A is significantly downregulated in LUAD, and its overexpression inhibited LUAD cell growth and invasion. Furthermore, FAM107A overexpression suppressed the anaerobic phase of carbohydrate metabolism in LUAD cells. Mechanistically, FAM107A regulated the CRYAB/PI3K/AKT signaling pathway, thereby inhibiting tumor progression, and similar findings were confirmed in our in vivo mouse model. In conclusion, FAM107A can suppress LUAD progression by regulating the CRYAB/PI3K/AKT pathway and aerobic glycolysis, indicating its potential as therapeutic target for LUAD.

FAM107A通过调节CRYAB/PI3K/AKT抑制LUAD细胞的生长、侵袭和有氧糖酵解。
肺腺癌(LUAD)的特点是其侵袭性和耐药性。FAM107A是一种肿瘤抑制基因,已发现在几种癌症中具有抑制作用,但其在LUAD中的作用尚不清楚。本研究探讨了FAM107A在调节LUAD细胞生长、侵袭和有氧糖酵解中的作用,并探讨了其潜在机制。我们的研究结果显示FAM107A在LUAD中显著下调,其过表达抑制LUAD细胞的生长和侵袭。此外,FAM107A过表达抑制LUAD细胞碳水化合物代谢的厌氧阶段。在机制上,FAM107A调节CRYAB/PI3K/AKT信号通路,从而抑制肿瘤进展,我们在小鼠体内模型中也证实了类似的发现。综上所述,FAM107A可以通过调节CRYAB/PI3K/AKT通路和有氧糖酵解抑制LUAD的进展,表明其作为LUAD治疗靶点的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信