Cloning, Heterologous Expression, and Biochemical Characterization of a Novel Glycoside Hydrolase 16 Family Enzyme for Biorefinery of Furcellaria lumbricalis.
{"title":"Cloning, Heterologous Expression, and Biochemical Characterization of a Novel Glycoside Hydrolase 16 Family Enzyme for Biorefinery of Furcellaria lumbricalis.","authors":"Limin Ning, Yanshang Wei, Zilong Guo","doi":"10.1007/s12010-024-05152-6","DOIUrl":null,"url":null,"abstract":"<p><p>Carrageenan has strong structural heterogeneity, resulting in the production of several hybridized forms in nature. Furcellaran is a typical hybrid type of carrageenan that includes both κ-carrageenan and β-carrageenan motifs in its structure. The discovery and characterization of a novel furcellaranase is of great significance for investigating and determining the structures of carrageenan. Herein, a new GH 16 enzyme CeFurA, with furcellaran and porphyran degrading activities, was cloned, and it included 350 amino acid residues and has a predicted theoretical molecular weight of 40.45 kDa. The enzyme displayed the highest biological activity (824.64 U/mg) on furcellaran at 35 °C and pH 9.0. Notably, CeFurA has excellent temperature stability throughout the wide 25 to 40 °C temperature range. It is useful and promising to efficient prepare hybrid bk-carrageenan oligosaccharides and elucidate the fine structure of the hybrid polysaccharide and oligosaccharides. TLC and ESI-MS indicate that CeFurA, as an endo-type enzyme, can specifically act on DA-Gβ1 → 4DA-G and DA-G4Sβ1 → 4DA-G4S glycosidic linkages within the furcellaran, producing disaccharides, tetrasaccharides, and hexasaccharides as the primary products. The CeFurA exhibited a sandwich-like structure according to structural modeling, which contains an embedded catalytic chamber formed by the β folded sheets placed in a reversing manner by acting on the internal DA-G4Sβ1 → 4DA-G4S glycosidic link. These exceptional properties make CeFurA a powerful tool for studying the heterogeneity of carrageenan structures and producing COS in the industry.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05152-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Carrageenan has strong structural heterogeneity, resulting in the production of several hybridized forms in nature. Furcellaran is a typical hybrid type of carrageenan that includes both κ-carrageenan and β-carrageenan motifs in its structure. The discovery and characterization of a novel furcellaranase is of great significance for investigating and determining the structures of carrageenan. Herein, a new GH 16 enzyme CeFurA, with furcellaran and porphyran degrading activities, was cloned, and it included 350 amino acid residues and has a predicted theoretical molecular weight of 40.45 kDa. The enzyme displayed the highest biological activity (824.64 U/mg) on furcellaran at 35 °C and pH 9.0. Notably, CeFurA has excellent temperature stability throughout the wide 25 to 40 °C temperature range. It is useful and promising to efficient prepare hybrid bk-carrageenan oligosaccharides and elucidate the fine structure of the hybrid polysaccharide and oligosaccharides. TLC and ESI-MS indicate that CeFurA, as an endo-type enzyme, can specifically act on DA-Gβ1 → 4DA-G and DA-G4Sβ1 → 4DA-G4S glycosidic linkages within the furcellaran, producing disaccharides, tetrasaccharides, and hexasaccharides as the primary products. The CeFurA exhibited a sandwich-like structure according to structural modeling, which contains an embedded catalytic chamber formed by the β folded sheets placed in a reversing manner by acting on the internal DA-G4Sβ1 → 4DA-G4S glycosidic link. These exceptional properties make CeFurA a powerful tool for studying the heterogeneity of carrageenan structures and producing COS in the industry.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.