Sirawit Pruksawan, Rigel Lu Jun Teo, Yu Hong Cheang, Yi Ting Chong, Evelyn Ling Ling Ng, FuKe Wang
{"title":"Structurally Transformable and Reconfigurable Hydrogel-Based Mechanical Metamaterials and Their Application in Biomedical Stents.","authors":"Sirawit Pruksawan, Rigel Lu Jun Teo, Yu Hong Cheang, Yi Ting Chong, Evelyn Ling Ling Ng, FuKe Wang","doi":"10.1021/acsami.4c20599","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanical metamaterials exhibit several unusual mechanical properties, such as a negative Poisson's ratio, which impart additional capabilities to materials. Recently, hydrogels have emerged as exceptional candidates for fabricating mechanical metamaterials that offer enhanced functionality and expanded applications due to their unique responsive characteristics. However, the adaptability of these metamaterials remains constrained and underutilized, as they lack integration of the hydrogels' soft and responsive characteristics with the metamaterial design. Here, we propose structurally transformable and reconfigurable hydrogel-based mechanical metamaterials through three-dimensional (3D) printing of lattice structures composed of multishape-memory poly(acrylic acid)-chitosan hydrogels. By incorporating reversible shape-memory mechanisms that control the structural arrangements of the lattice, these metamaterials can exhibit transformable and reconfigurable mechanical characteristics under various environmental conditions, including auxetic behavior, with Poisson's ratios switchable from negative to zero or positive. These adaptable mechanical responses across different states arise from structural changes in lattice, surpassing the gradual changes observed in conventional stimuli-responsive materials. The application of these metamaterials in multimode biomedical stents demonstrates their adaptability in practical settings, allowing them to transition between expandable, nonexpandable, and shrinkable states, with corresponding Poisson's ratios. By integrating multishape-memory soft materials with metamaterial design, we can significantly enhance their functionality, advancing the development of smart biomaterials.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"4055-4066"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c20599","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mechanical metamaterials exhibit several unusual mechanical properties, such as a negative Poisson's ratio, which impart additional capabilities to materials. Recently, hydrogels have emerged as exceptional candidates for fabricating mechanical metamaterials that offer enhanced functionality and expanded applications due to their unique responsive characteristics. However, the adaptability of these metamaterials remains constrained and underutilized, as they lack integration of the hydrogels' soft and responsive characteristics with the metamaterial design. Here, we propose structurally transformable and reconfigurable hydrogel-based mechanical metamaterials through three-dimensional (3D) printing of lattice structures composed of multishape-memory poly(acrylic acid)-chitosan hydrogels. By incorporating reversible shape-memory mechanisms that control the structural arrangements of the lattice, these metamaterials can exhibit transformable and reconfigurable mechanical characteristics under various environmental conditions, including auxetic behavior, with Poisson's ratios switchable from negative to zero or positive. These adaptable mechanical responses across different states arise from structural changes in lattice, surpassing the gradual changes observed in conventional stimuli-responsive materials. The application of these metamaterials in multimode biomedical stents demonstrates their adaptability in practical settings, allowing them to transition between expandable, nonexpandable, and shrinkable states, with corresponding Poisson's ratios. By integrating multishape-memory soft materials with metamaterial design, we can significantly enhance their functionality, advancing the development of smart biomaterials.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.