{"title":"Forecasting the air pollution concentration with neural networks","authors":"Jarosław Bernacki","doi":"10.1016/j.uclim.2024.102262","DOIUrl":null,"url":null,"abstract":"<div><div>Air pollution is a global problem, which has a major impact on human health. Every year concentrations of many air pollutants cause a large number of deaths. In Europe, particularly Poland, there is poor air quality. In this paper, we deal with forecasting the concentration of air pollutants. We propose four deep learning-based methods for forecasting, which include temporal convolutional network (TCN), Kolmogorov-Arnold Network (KAN), fully convolutional network (FCN), and gated recurrent unit (GRU). Each of the methods is used in three different configurations. We generate predictions for eight air pollutants, from eight cities during a heating season in Poland. Extensive twofold experimental evaluation, combining statistical hypotheses verification and error measures (MAE, MAPE, RMSE) for more than 740 forecast models confirmed high prediction accuracy. Moreover, experiments revealed the advantage of the proposed methods over several state-of-the-art algorithms from the literature.</div></div>","PeriodicalId":48626,"journal":{"name":"Urban Climate","volume":"59 ","pages":"Article 102262"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Climate","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212095524004590","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Air pollution is a global problem, which has a major impact on human health. Every year concentrations of many air pollutants cause a large number of deaths. In Europe, particularly Poland, there is poor air quality. In this paper, we deal with forecasting the concentration of air pollutants. We propose four deep learning-based methods for forecasting, which include temporal convolutional network (TCN), Kolmogorov-Arnold Network (KAN), fully convolutional network (FCN), and gated recurrent unit (GRU). Each of the methods is used in three different configurations. We generate predictions for eight air pollutants, from eight cities during a heating season in Poland. Extensive twofold experimental evaluation, combining statistical hypotheses verification and error measures (MAE, MAPE, RMSE) for more than 740 forecast models confirmed high prediction accuracy. Moreover, experiments revealed the advantage of the proposed methods over several state-of-the-art algorithms from the literature.
期刊介绍:
Urban Climate serves the scientific and decision making communities with the publication of research on theory, science and applications relevant to understanding urban climatic conditions and change in relation to their geography and to demographic, socioeconomic, institutional, technological and environmental dynamics and global change. Targeted towards both disciplinary and interdisciplinary audiences, this journal publishes original research papers, comprehensive review articles, book reviews, and short communications on topics including, but not limited to, the following:
Urban meteorology and climate[...]
Urban environmental pollution[...]
Adaptation to global change[...]
Urban economic and social issues[...]
Research Approaches[...]