Endurable IGZO/SnSx/IGZO Heterojunction Phototransistor Arrays for Image Sensors

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kyungho Park, Byung Ha Kang, Jong Bin An, Sujin Jung, Kunho Moon, Kyungmoon Kwak, Jusung Chung, Dong Hyun Choi, Yong Seon Hwang, Hyun Jae Kim
{"title":"Endurable IGZO/SnSx/IGZO Heterojunction Phototransistor Arrays for Image Sensors","authors":"Kyungho Park, Byung Ha Kang, Jong Bin An, Sujin Jung, Kunho Moon, Kyungmoon Kwak, Jusung Chung, Dong Hyun Choi, Yong Seon Hwang, Hyun Jae Kim","doi":"10.1021/acsami.4c18491","DOIUrl":null,"url":null,"abstract":"Optoelectronic devices require stable operation to detect repetitive visual information. In this study, endurable arrays based on heterojunction phototransistors composed of indium–gallium–zinc oxide (IGZO) with a low dark current and tin sulfide (SnS<sub><i>x</i></sub>) capable of absorbing visible light are developed for image sensors. The tandem structure of IGZO/SnS<sub><i>x</i></sub>/IGZO (ISI) enables stable operation under repetitive exposure to visible light by improving the transport ability of the photoexcited carriers through mitigated trap sites and their separation into each IGZO layer. Additionally, the structure promotes recombination by confining the holes. Therefore, the optimal ISI phototransistors exhibit a photoresponsivity of 514.50 A/W and a detectivity of 1.31 × 10<sup>9</sup> Jones under red light (635 nm) of 1 mW/mm<sup>2</sup> and endurable time-dependent photoresponse characteristics, including a slope value of 1.66 × 10<sup>–11</sup>, without the persistent photoconductivity phenomenon under green light (532 nm) at a frequency of 50 mHz for over 4,000 s. Furthermore, image sensing characteristics of the 6 × 6 arrays based on ISI phototransistors for image sensors are demonstrated by sequentially applying “4” and “2” digit numbers. These technologies contribute to the development of endurable oxide-based optoelectronic devices and provide valuable perspectives on the utility of next-generation image sensors.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"37 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c18491","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Optoelectronic devices require stable operation to detect repetitive visual information. In this study, endurable arrays based on heterojunction phototransistors composed of indium–gallium–zinc oxide (IGZO) with a low dark current and tin sulfide (SnSx) capable of absorbing visible light are developed for image sensors. The tandem structure of IGZO/SnSx/IGZO (ISI) enables stable operation under repetitive exposure to visible light by improving the transport ability of the photoexcited carriers through mitigated trap sites and their separation into each IGZO layer. Additionally, the structure promotes recombination by confining the holes. Therefore, the optimal ISI phototransistors exhibit a photoresponsivity of 514.50 A/W and a detectivity of 1.31 × 109 Jones under red light (635 nm) of 1 mW/mm2 and endurable time-dependent photoresponse characteristics, including a slope value of 1.66 × 10–11, without the persistent photoconductivity phenomenon under green light (532 nm) at a frequency of 50 mHz for over 4,000 s. Furthermore, image sensing characteristics of the 6 × 6 arrays based on ISI phototransistors for image sensors are demonstrated by sequentially applying “4” and “2” digit numbers. These technologies contribute to the development of endurable oxide-based optoelectronic devices and provide valuable perspectives on the utility of next-generation image sensors.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信