A Wearable Antifouling Electrochemical Sensor Integrated with an Antimicrobial Microneedle Array for Uric Acid Detection in Interstitial Fluid

IF 5.7 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Mingrui Lv, Lei Wang, Yiting Hou, Xiujuan Qiao, Xiliang Luo
{"title":"A Wearable Antifouling Electrochemical Sensor Integrated with an Antimicrobial Microneedle Array for Uric Acid Detection in Interstitial Fluid","authors":"Mingrui Lv, Lei Wang, Yiting Hou, Xiujuan Qiao, Xiliang Luo","doi":"10.1016/j.aca.2025.343610","DOIUrl":null,"url":null,"abstract":"Wearable microneedle array (MNA) based electrochemical sensors have gained increasing attention for their capability to analyze biomarkers in the interstitial fluid (ISF), enabling noninvasive, continuous monitoring of health parameters. However, challenges such as nonspecific adsorption of biomolecules on the sensor surfaces and the risk of infection at the microneedle penetration sites hinder their practical application. Herein, a wearable dual-layer microneedle patch was prepared to overcome these issues by integrating an antimicrobial microneedle layer with an antifouling sensing layer. The microneedle layer was prepared from polyvinyl alcohol, carboxylated nanocellulose, quaternary ammonium chitosan and carbon nanotubes, and it possessed antimicrobial and mechanical properties necessary for skin penetration, ISF collection and effective transmission to the sensing layer. The sensing layer was prepared from bacterial cellulose, epoxy propyl dimethyl dodecyl ammonium chloride, carbon nanotubes and gold nanoparticles, and it was capable of preventing biofouling and sensing uric acid (UA) in ISF. The wearable MNA based sensor exhibited a linear range of 0.5 μM - 9.6 μM and 9.6 μM - 2.15 for UA detection, with a limit of detection of 0.17 μM. Moreover, it was capable of accurately monitoring UA levels in ISF of mice without significant biofouling, as verified by the ELISA method. This innovative wearable sensor based on the MNA effectively balances the antifouling and antimicrobial functions, offering a reliable strategy for the assay of ISF, and making it a promising tool for personalized and decentralized health monitoring.","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"116 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.aca.2025.343610","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Wearable microneedle array (MNA) based electrochemical sensors have gained increasing attention for their capability to analyze biomarkers in the interstitial fluid (ISF), enabling noninvasive, continuous monitoring of health parameters. However, challenges such as nonspecific adsorption of biomolecules on the sensor surfaces and the risk of infection at the microneedle penetration sites hinder their practical application. Herein, a wearable dual-layer microneedle patch was prepared to overcome these issues by integrating an antimicrobial microneedle layer with an antifouling sensing layer. The microneedle layer was prepared from polyvinyl alcohol, carboxylated nanocellulose, quaternary ammonium chitosan and carbon nanotubes, and it possessed antimicrobial and mechanical properties necessary for skin penetration, ISF collection and effective transmission to the sensing layer. The sensing layer was prepared from bacterial cellulose, epoxy propyl dimethyl dodecyl ammonium chloride, carbon nanotubes and gold nanoparticles, and it was capable of preventing biofouling and sensing uric acid (UA) in ISF. The wearable MNA based sensor exhibited a linear range of 0.5 μM - 9.6 μM and 9.6 μM - 2.15 for UA detection, with a limit of detection of 0.17 μM. Moreover, it was capable of accurately monitoring UA levels in ISF of mice without significant biofouling, as verified by the ELISA method. This innovative wearable sensor based on the MNA effectively balances the antifouling and antimicrobial functions, offering a reliable strategy for the assay of ISF, and making it a promising tool for personalized and decentralized health monitoring.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytica Chimica Acta
Analytica Chimica Acta 化学-分析化学
CiteScore
10.40
自引率
6.50%
发文量
1081
审稿时长
38 days
期刊介绍: Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信