ANI-1ccx-gelu Universal Interatomic Potential and Its Fine-Tuning: Toward Accurate and Efficient Anharmonic Vibrational Frequencies

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Seyedeh Fatemeh Alavi, Yuxinxin Chen, Yi-Fan Hou, Fuchun Ge, Peikun Zheng, Pavlo O. Dral
{"title":"ANI-1ccx-gelu Universal Interatomic Potential and Its Fine-Tuning: Toward Accurate and Efficient Anharmonic Vibrational Frequencies","authors":"Seyedeh Fatemeh Alavi, Yuxinxin Chen, Yi-Fan Hou, Fuchun Ge, Peikun Zheng, Pavlo O. Dral","doi":"10.1021/acs.jpclett.4c03031","DOIUrl":null,"url":null,"abstract":"Calculating anharmonic vibrational modes of molecules for interpreting experimental spectra is one of the most interesting challenges of contemporary computational chemistry. However, the traditional QM methods are costly for this application. Machine learning techniques have emerged as a powerful tool for substituting the traditional QM methods. Universal interatomic potentials (UIPs) hold a particular promise to deliver accurate results at a fraction of the cost of the traditional QM methods, but the performance of UIPs for calculating anharmonic vibrational frequencies remains hitherto unknown. Here we show that despite a known excellent performance of the representative UIP ANI-1ccx for thermochemical properties, it fails for the anharmonic frequencies due to the original unfortunate choice of the activation function. Hence, we recommend evaluating new UIPs on anharmonic frequencies as an additional important quality test. To remedy the shortcomings of ANI-1ccx, we introduce its reformulation ANI-1ccx-gelu with the GELU activation function, which is capable of calculating IR anharmonic frequencies with reasonable accuracy (close to B3LYP/6-31G*). We also show that our new UIP can be fine-tuned to obtain very accurate anharmonic frequencies for some specific molecules but more effort is needed to improve the overall quality of UIP and its capability for fine-tuning. The new UIP will be included as part of our universal and updatable AI-enhanced QM methods (UAIQM) platform and is available together with usage and fine-tuning tutorials in open-source MLatom at https://github.com/dralgroup/mlatom. The calculations can also be performed via a web browser at https://XACScloud.com.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"92 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03031","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Calculating anharmonic vibrational modes of molecules for interpreting experimental spectra is one of the most interesting challenges of contemporary computational chemistry. However, the traditional QM methods are costly for this application. Machine learning techniques have emerged as a powerful tool for substituting the traditional QM methods. Universal interatomic potentials (UIPs) hold a particular promise to deliver accurate results at a fraction of the cost of the traditional QM methods, but the performance of UIPs for calculating anharmonic vibrational frequencies remains hitherto unknown. Here we show that despite a known excellent performance of the representative UIP ANI-1ccx for thermochemical properties, it fails for the anharmonic frequencies due to the original unfortunate choice of the activation function. Hence, we recommend evaluating new UIPs on anharmonic frequencies as an additional important quality test. To remedy the shortcomings of ANI-1ccx, we introduce its reformulation ANI-1ccx-gelu with the GELU activation function, which is capable of calculating IR anharmonic frequencies with reasonable accuracy (close to B3LYP/6-31G*). We also show that our new UIP can be fine-tuned to obtain very accurate anharmonic frequencies for some specific molecules but more effort is needed to improve the overall quality of UIP and its capability for fine-tuning. The new UIP will be included as part of our universal and updatable AI-enhanced QM methods (UAIQM) platform and is available together with usage and fine-tuning tutorials in open-source MLatom at https://github.com/dralgroup/mlatom. The calculations can also be performed via a web browser at https://XACScloud.com.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信