An Efficient Ultra-Narrowband Yellow Emitter Based on a Double-Boron-Embedded Tetraazacyclophane

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jia-Jun Hu, Xiao Liang, Zhi-Ping Yan, Jia-Qi Liang, Hua-Xiu Ni, Li Yuan, Jing-Lin Zuo, You-Xuan Zheng
{"title":"An Efficient Ultra-Narrowband Yellow Emitter Based on a Double-Boron-Embedded Tetraazacyclophane","authors":"Jia-Jun Hu, Xiao Liang, Zhi-Ping Yan, Jia-Qi Liang, Hua-Xiu Ni, Li Yuan, Jing-Lin Zuo, You-Xuan Zheng","doi":"10.1002/anie.202421102","DOIUrl":null,"url":null,"abstract":"Ultra-narrowband and highly modifiable multiple resonance thermally activated delayed fluorescence (MR-TADF) materials are crucial for realizing high-performance wide-color-gamut display applications. Despite progress, most MR-TADF emitters remain confined to blue and green wavelengths, with difficulties extending into longer wavelengths without significant spectral broadening, which compromises color purity in full-color organic light-emitting diode (OLED) displays. In this work, we present a novel tetraazacyclophane-based architecture embedding dual boron atoms to remarkedly enhance intramolecular charge transfer through the strategic positioning of boron and nitrogen atoms. This arrangement induces a substantial redshift while maintaining structural rigidity and molecular orbital symmetry, with a hole-electron central distance of 0 Å, allowing for ultra-narrowband emission. The resulting MR-TADF material, HBN, delivers yellow emission peaking at 572 nm (2.168 eV) with an impressively narrow full-width at half-maximum (FWHM) of 17 nm (0.064 eV) in dilute toluene. Moreover, the corresponding phosphorescent-sensitized fluorescence OLED achieves yellow emission maximum at 581 nm, with a narrow FWHM of 25 nm, a high maximum external quantum efficiency of 36.1%, and a luminance exceeding 40,000 cd m-2. These outstanding photoluminescent and electroluminescent performances validate the superiority of our molecular design strategy, highlighting its significant potential for cutting-edge optoelectronic applications.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"128 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202421102","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ultra-narrowband and highly modifiable multiple resonance thermally activated delayed fluorescence (MR-TADF) materials are crucial for realizing high-performance wide-color-gamut display applications. Despite progress, most MR-TADF emitters remain confined to blue and green wavelengths, with difficulties extending into longer wavelengths without significant spectral broadening, which compromises color purity in full-color organic light-emitting diode (OLED) displays. In this work, we present a novel tetraazacyclophane-based architecture embedding dual boron atoms to remarkedly enhance intramolecular charge transfer through the strategic positioning of boron and nitrogen atoms. This arrangement induces a substantial redshift while maintaining structural rigidity and molecular orbital symmetry, with a hole-electron central distance of 0 Å, allowing for ultra-narrowband emission. The resulting MR-TADF material, HBN, delivers yellow emission peaking at 572 nm (2.168 eV) with an impressively narrow full-width at half-maximum (FWHM) of 17 nm (0.064 eV) in dilute toluene. Moreover, the corresponding phosphorescent-sensitized fluorescence OLED achieves yellow emission maximum at 581 nm, with a narrow FWHM of 25 nm, a high maximum external quantum efficiency of 36.1%, and a luminance exceeding 40,000 cd m-2. These outstanding photoluminescent and electroluminescent performances validate the superiority of our molecular design strategy, highlighting its significant potential for cutting-edge optoelectronic applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信