Wide-ranging predictions of new stable compounds powered by recommendation engines

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Sean D. Griesemer, Bianca Baldassarri, Ruijie Zhu, Jiahong Shen, Koushik Pal, Cheol Woo Park, Chris Wolverton
{"title":"Wide-ranging predictions of new stable compounds powered by recommendation engines","authors":"Sean D. Griesemer, Bianca Baldassarri, Ruijie Zhu, Jiahong Shen, Koushik Pal, Cheol Woo Park, Chris Wolverton","doi":"10.1126/sciadv.adq1431","DOIUrl":null,"url":null,"abstract":"The computational search for new stable inorganic compounds is faster than ever, thanks to high-throughput density functional theory (DFT). However, stable compound searches remain highly expensive because of the enormous search space and the cost of DFT calculations. To aid these searches, recommendation engines have been developed. We conduct a systematic comparison of the performance of previously developed recommendation engines, specifically ones based on elemental substitution, data mining, and neural network prediction of formation enthalpy. After identifying ways to improve the recommendation engines, we find the neural network to be superior at recommending stable Heusler compounds. Armed with improved recommendation engines, we identify tens of thousands of compounds that are stable at zero temperature and pressure, now available in the Open Quantum Materials Database. We summarize this diverse pool of compounds, including the elusive mixed anion compounds, and two of their many applications: thermoelectricity and solar thermochemical fuel production.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"73 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adq1431","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The computational search for new stable inorganic compounds is faster than ever, thanks to high-throughput density functional theory (DFT). However, stable compound searches remain highly expensive because of the enormous search space and the cost of DFT calculations. To aid these searches, recommendation engines have been developed. We conduct a systematic comparison of the performance of previously developed recommendation engines, specifically ones based on elemental substitution, data mining, and neural network prediction of formation enthalpy. After identifying ways to improve the recommendation engines, we find the neural network to be superior at recommending stable Heusler compounds. Armed with improved recommendation engines, we identify tens of thousands of compounds that are stable at zero temperature and pressure, now available in the Open Quantum Materials Database. We summarize this diverse pool of compounds, including the elusive mixed anion compounds, and two of their many applications: thermoelectricity and solar thermochemical fuel production.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信