A single-cell transcriptomic atlas reveals the cell differentiation trajectory and the response to virus invasion in swelling clove of garlic

IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences
Song Gao, Fu Li, Zheng Zeng, Qiaoyun He, Hassan H A Mostafa, Suling Zhang, Taotao Wang, Yanzhou Wang, Touming Liu
{"title":"A single-cell transcriptomic atlas reveals the cell differentiation trajectory and the response to virus invasion in swelling clove of garlic","authors":"Song Gao, Fu Li, Zheng Zeng, Qiaoyun He, Hassan H A Mostafa, Suling Zhang, Taotao Wang, Yanzhou Wang, Touming Liu","doi":"10.1093/hr/uhae365","DOIUrl":null,"url":null,"abstract":"The garlic bulb comprises several cloves, the swelling growth of which is significantly hindered by the accumulation of viruses. Herein, we describe a single-cell transcriptomic atlas of swelling cloves with virus accumulation, which comprised 19 681 high-quality cells representing 11 distinct cell clusters. Cells of two clusters, clusters 7 (C7) and 11 (C11), were inferred to be from the meristem. Cell trajectory analysis suggested the differentiation of clove cells to start from the meristem cells, along two pseudo-time paths. Investigation into the cell-specific activity of invasive viruses demonstrated that garlic virus genes showed relatively low expression activity in cells of the clove meristem. There were 2060 garlic genes co-expressed with virus genes, many of which showed an association with the defense response. Five glutathione synthase/reductase genes co-expressed with virus genes displayed up-regulated expression, and the glutathione and related metabolites level showed an alteration in virus-invasive garlic clove, implying the role of glutathione in viral immunity of garlic. Our study offers valuable insights into the clove organogenesis and interaction between garlic and virus at single-cell resolution.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"82 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae365","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The garlic bulb comprises several cloves, the swelling growth of which is significantly hindered by the accumulation of viruses. Herein, we describe a single-cell transcriptomic atlas of swelling cloves with virus accumulation, which comprised 19 681 high-quality cells representing 11 distinct cell clusters. Cells of two clusters, clusters 7 (C7) and 11 (C11), were inferred to be from the meristem. Cell trajectory analysis suggested the differentiation of clove cells to start from the meristem cells, along two pseudo-time paths. Investigation into the cell-specific activity of invasive viruses demonstrated that garlic virus genes showed relatively low expression activity in cells of the clove meristem. There were 2060 garlic genes co-expressed with virus genes, many of which showed an association with the defense response. Five glutathione synthase/reductase genes co-expressed with virus genes displayed up-regulated expression, and the glutathione and related metabolites level showed an alteration in virus-invasive garlic clove, implying the role of glutathione in viral immunity of garlic. Our study offers valuable insights into the clove organogenesis and interaction between garlic and virus at single-cell resolution.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Horticulture Research
Horticulture Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
11.20
自引率
6.90%
发文量
367
审稿时长
20 weeks
期刊介绍: Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信