Numerical Simulation Strategy and Applications for Falling Film Flow with Variable Viscosity Fluids

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Wenxu Yuan, Wenxing Chen, Shichang Chen
{"title":"Numerical Simulation Strategy and Applications for Falling Film Flow with Variable Viscosity Fluids","authors":"Wenxu Yuan, Wenxing Chen, Shichang Chen","doi":"10.1021/acs.iecr.4c03582","DOIUrl":null,"url":null,"abstract":"The flow behaviors for falling film with wide-range variable viscosity were demonstrated by a neosimulation strategy, which incorporated the age transport equation based on mean age theory and a designable age-viscosity formula into Navier–Stokes equations. Surprisingly, a turning region was revealed, in which the thickness variation for variable viscosity falling film with the flow rate and initial viscosity was reversed. The larger the flow rate or the higher the initial viscosity, the longer the length of the turning region, and further, it was from the inlet along the flow direction. A flow cross-sectional viscosity was proposed to explain this anomaly. Then, a simulation scheme for calculating the initial viscosity based on outlet viscosity and an empirical equation for designing the length of the falling film pipe could be achieved according to flow cross-sectional viscosity analysis. It provided a practical reference for falling film reactor design, scale-up, and process optimization.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"28 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c03582","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The flow behaviors for falling film with wide-range variable viscosity were demonstrated by a neosimulation strategy, which incorporated the age transport equation based on mean age theory and a designable age-viscosity formula into Navier–Stokes equations. Surprisingly, a turning region was revealed, in which the thickness variation for variable viscosity falling film with the flow rate and initial viscosity was reversed. The larger the flow rate or the higher the initial viscosity, the longer the length of the turning region, and further, it was from the inlet along the flow direction. A flow cross-sectional viscosity was proposed to explain this anomaly. Then, a simulation scheme for calculating the initial viscosity based on outlet viscosity and an empirical equation for designing the length of the falling film pipe could be achieved according to flow cross-sectional viscosity analysis. It provided a practical reference for falling film reactor design, scale-up, and process optimization.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信