Droplet contact numbers and contact probabilities in liquid-liquid dense-packed zones

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
AIChE Journal Pub Date : 2025-01-03 DOI:10.1002/aic.18723
Stepan Sibirtsev, Lukas Thiel, Andrey Kirsanov, Andreas Jupke
{"title":"Droplet contact numbers and contact probabilities in liquid-liquid dense-packed zones","authors":"Stepan Sibirtsev, Lukas Thiel, Andrey Kirsanov, Andreas Jupke","doi":"10.1002/aic.18723","DOIUrl":null,"url":null,"abstract":"Dense-packed zones (DPZs) are crucial in designing equipment for liquid-liquid phase separation processes, as the DPZ height affects apparatus size. This article presents an open-access simulation approach to determine droplet contact numbers and probabilities, which are vital for modeling the deformation and coalescence of polydisperse droplets in a DPZ. The simulation is applied to three technical cases to assess how droplet size distribution (DSD) shapes impact contact numbers and probabilities. Sensitivity analysis reveals that broader DSDs and larger droplet classes lead to higher contact numbers. In contrast, contact probability is primarily determined by droplet class diameter and its number probability within the DSD, showing an almost linear relationship. These results highlight the significance of DSD shape and droplet class diameter in predicting droplet contact numbers and probabilities in DPZs, providing valuable insights for future modeling of liquid-liquid phase separation.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"18 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18723","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dense-packed zones (DPZs) are crucial in designing equipment for liquid-liquid phase separation processes, as the DPZ height affects apparatus size. This article presents an open-access simulation approach to determine droplet contact numbers and probabilities, which are vital for modeling the deformation and coalescence of polydisperse droplets in a DPZ. The simulation is applied to three technical cases to assess how droplet size distribution (DSD) shapes impact contact numbers and probabilities. Sensitivity analysis reveals that broader DSDs and larger droplet classes lead to higher contact numbers. In contrast, contact probability is primarily determined by droplet class diameter and its number probability within the DSD, showing an almost linear relationship. These results highlight the significance of DSD shape and droplet class diameter in predicting droplet contact numbers and probabilities in DPZs, providing valuable insights for future modeling of liquid-liquid phase separation.
液-液密集区液滴接触数和接触概率
致密填充区高度影响着设备的尺寸,是设计液-液相分离设备的关键。本文提出了一种开放获取的模拟方法来确定液滴接触数和概率,这对于模拟多分散液滴在DPZ中的变形和聚并至关重要。通过对三种技术情况的模拟,评估了液滴尺寸分布(DSD)形状对接触数和概率的影响。灵敏度分析表明,更大的dsd和更大的液滴类别导致更高的接触数。而接触概率主要由液滴类直径及其在DSD内的数量概率决定,呈现近似线性关系。这些结果突出了DSD形状和液滴类别直径在预测DPZs中液滴接触数和概率方面的重要性,为未来的液液相分离建模提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信