Lu Zhang, Hang Zhou, Yongchao Xie, Wenjing Xu, Hongyue Tian, Xingchao Zhao, Yuheng Ni, Sang Young Jeong, Ye Zou, Xixiang Zhu, Xiaoling Ma, Han Young Woo, Fujun Zhang
{"title":"Cascaded Energy and Charge Transfer Synergistically Prompting 18.7% Efficiency of Layered Organic Solar Cells with 1.48 eV Bandgap","authors":"Lu Zhang, Hang Zhou, Yongchao Xie, Wenjing Xu, Hongyue Tian, Xingchao Zhao, Yuheng Ni, Sang Young Jeong, Ye Zou, Xixiang Zhu, Xiaoling Ma, Han Young Woo, Fujun Zhang","doi":"10.1002/aenm.202404718","DOIUrl":null,"url":null,"abstract":"Series of layer-by-layer organic solar cells (LOSCs) are constructed by sequentially spin-coating donor layer and acceptor layers. A champion power conversion efficiency (PCE) of 18.79% is achieved from the LOSCs with PBQx-TCl/ITIC/PY-DT as active layers, which should be one of the top values among the OSCs with optical bandgap over 1.48 eV. The middle bandgap material ITIC has a complementary photon harvesting range with PBQx-TCl and PY-DT, leading to the enhanced photon harvesting of active layers. Meanwhile, ITIC can play a vital role in energy and charge transfer relay to increase exciton utilization and charge transport, which can be confirmed from the varied FFs of normal or inverted LOSCs with ITIC/PY-DT or PY-DT/ITIC as acceptor layers. Over 7% PCE improvement of LOSCs can be achieved by employing ITIC as the middle layer to form cascaded energy and charge transfer in the active layers. This work may provide an efficient strategy for improving the performance of LOSCs.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"73 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404718","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Series of layer-by-layer organic solar cells (LOSCs) are constructed by sequentially spin-coating donor layer and acceptor layers. A champion power conversion efficiency (PCE) of 18.79% is achieved from the LOSCs with PBQx-TCl/ITIC/PY-DT as active layers, which should be one of the top values among the OSCs with optical bandgap over 1.48 eV. The middle bandgap material ITIC has a complementary photon harvesting range with PBQx-TCl and PY-DT, leading to the enhanced photon harvesting of active layers. Meanwhile, ITIC can play a vital role in energy and charge transfer relay to increase exciton utilization and charge transport, which can be confirmed from the varied FFs of normal or inverted LOSCs with ITIC/PY-DT or PY-DT/ITIC as acceptor layers. Over 7% PCE improvement of LOSCs can be achieved by employing ITIC as the middle layer to form cascaded energy and charge transfer in the active layers. This work may provide an efficient strategy for improving the performance of LOSCs.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.