Achieving 20% Efficiency in Organic Solar Cells Through Conformationally Locked Solid Additives

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Siying Wang, Sixuan Wang, Jiarui Wang, Na Yu, Jiawei Qiao, Xianqiang Xie, Congqi Li, Misbah Sehar Abbasi, Ruxue Ding, Xin Zhang, Yinghui Han, Guanghao Lu, Jianqi Zhang, Xiaotao Hao, Zheng Tang, Yunhao Cai, Hui Huang
{"title":"Achieving 20% Efficiency in Organic Solar Cells Through Conformationally Locked Solid Additives","authors":"Siying Wang, Sixuan Wang, Jiarui Wang, Na Yu, Jiawei Qiao, Xianqiang Xie, Congqi Li, Misbah Sehar Abbasi, Ruxue Ding, Xin Zhang, Yinghui Han, Guanghao Lu, Jianqi Zhang, Xiaotao Hao, Zheng Tang, Yunhao Cai, Hui Huang","doi":"10.1002/aenm.202405205","DOIUrl":null,"url":null,"abstract":"Volatile solid additives (VSAs) have emerged as one of the most effective strategies for optimizing the active layer morphology of organic solar cells (OSCs). In this study, two VSAs, HBT-1 and HBT-2, are designed and synthesized to investigate the effect of the VASs’ conformation on the photovoltaic performances. Compared to HBT-1, HBT-2 incorporates internal noncovalent conformational locks (NoCLs), resulting in reduced conformational disorder, improved molecular planarity, and enhanced crystallinity. These features significantly influence the intermolecular packing of both donor and acceptor materials in the active layer, which can facilitate charge transport and reduce charge recombination. Consequently, the D18:L8-BO:PY-C11 OSCs utilizing the HBT-2 additive achieved an impressive efficiency of 20.01%, markedly higher than devices fabricated without additives (17.83%) and those processed with HBT-1 (18.76%). Furthermore, HBT-2 demonstrated excellent compatibility across multiple systems. This work underscores the NoCL strategy as a straightforward and effective approach for designing VSAs for high performance OSCs.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"2 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202405205","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Volatile solid additives (VSAs) have emerged as one of the most effective strategies for optimizing the active layer morphology of organic solar cells (OSCs). In this study, two VSAs, HBT-1 and HBT-2, are designed and synthesized to investigate the effect of the VASs’ conformation on the photovoltaic performances. Compared to HBT-1, HBT-2 incorporates internal noncovalent conformational locks (NoCLs), resulting in reduced conformational disorder, improved molecular planarity, and enhanced crystallinity. These features significantly influence the intermolecular packing of both donor and acceptor materials in the active layer, which can facilitate charge transport and reduce charge recombination. Consequently, the D18:L8-BO:PY-C11 OSCs utilizing the HBT-2 additive achieved an impressive efficiency of 20.01%, markedly higher than devices fabricated without additives (17.83%) and those processed with HBT-1 (18.76%). Furthermore, HBT-2 demonstrated excellent compatibility across multiple systems. This work underscores the NoCL strategy as a straightforward and effective approach for designing VSAs for high performance OSCs.

Abstract Image

通过构象锁定固体添加剂实现有机太阳能电池20%的效率
挥发性固体添加剂(VSAs)已成为优化有机太阳能电池(OSCs)活性层形态的最有效策略之一。本研究设计并合成了两个VASs, hpt -1和hpt -2,以研究VASs的构象对光伏性能的影响。与HBT-1相比,HBT-2包含内部非共价构象锁(nocl),从而减少了构象紊乱,改善了分子平面度,增强了结晶度。这些特征显著地影响了活性层中供体和受体材料的分子间填充,从而促进了电荷的传输,减少了电荷的重组。因此,使用hpt -2添加剂的D18:L8-BO: y - c11 OSCs的效率达到了20.01%,显著高于未添加添加剂的器件(17.83%)和使用hpt -1加工的器件(18.76%)。此外,HBT-2表现出跨多个系统的出色兼容性。这项工作强调了NoCL策略是为高性能osc设计vsa的一种简单有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信