Sustainable Synthesis of Functional Materials Assisted by Deep Eutectic Solvents for Biomedical, Environmental, and Energy Applications

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yingxia Nie, Yuyue Zhou, Yan Zhang, Dalin Sun, Deyu Wu, Lin Ban, Sonil Nanda, Chunbao Xu, Heng Zhang
{"title":"Sustainable Synthesis of Functional Materials Assisted by Deep Eutectic Solvents for Biomedical, Environmental, and Energy Applications","authors":"Yingxia Nie, Yuyue Zhou, Yan Zhang, Dalin Sun, Deyu Wu, Lin Ban, Sonil Nanda, Chunbao Xu, Heng Zhang","doi":"10.1002/adfm.202418957","DOIUrl":null,"url":null,"abstract":"The rapid expansion of the global economy has led to a surge in energy demand, resulting in significant environmental pollution and energy scarcity due to the concomitant increase in greenhouse gas emissions. The advancement of deep eutectic solvents (DESs) has introduced a viable substitute for traditional solvents and processing methods, boasting numerous intrinsic benefits, such as superior eco-compatibility, outstanding thermal stability, and desirable electrochemical properties. Consequently, DESs have garnered significant attention from the research community, demonstrating a broad spectrum of prospective applications in a variety of fields for instance energy, biomass degradation, materials synthesis, and biomedicine. This review aims to offer a comprehensive and methodical overview of DESs, encompassing their historical development, classification, preparation methodologies, and fundamental physicochemical properties. Furthermore, this review explores the applications of DESs in the synthesis of various functional materials and examines their multifunctional roles. Crucially, the economic viability of DESs for environmental and energy applications is thoroughly examined, including an assessment of their cost-effectiveness and market potential. Finally, the review concludes by outlining future research directions for DESs development and the challenges that remain.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"28 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202418957","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid expansion of the global economy has led to a surge in energy demand, resulting in significant environmental pollution and energy scarcity due to the concomitant increase in greenhouse gas emissions. The advancement of deep eutectic solvents (DESs) has introduced a viable substitute for traditional solvents and processing methods, boasting numerous intrinsic benefits, such as superior eco-compatibility, outstanding thermal stability, and desirable electrochemical properties. Consequently, DESs have garnered significant attention from the research community, demonstrating a broad spectrum of prospective applications in a variety of fields for instance energy, biomass degradation, materials synthesis, and biomedicine. This review aims to offer a comprehensive and methodical overview of DESs, encompassing their historical development, classification, preparation methodologies, and fundamental physicochemical properties. Furthermore, this review explores the applications of DESs in the synthesis of various functional materials and examines their multifunctional roles. Crucially, the economic viability of DESs for environmental and energy applications is thoroughly examined, including an assessment of their cost-effectiveness and market potential. Finally, the review concludes by outlining future research directions for DESs development and the challenges that remain.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信