Atomic spin precession electro-optic modulation detection based on guided mode resonant lithium niobate metasurfaces

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-01-03 DOI:10.1039/d4nr04794j
Jie Sun, Heng Yuan, Yuqing yang, zhibo cui, yuting xu, yan xu, Yulan Fu, Zhen Chai
{"title":"Atomic spin precession electro-optic modulation detection based on guided mode resonant lithium niobate metasurfaces","authors":"Jie Sun, Heng Yuan, Yuqing yang, zhibo cui, yuting xu, yan xu, Yulan Fu, Zhen Chai","doi":"10.1039/d4nr04794j","DOIUrl":null,"url":null,"abstract":"Low-frequency noise in detection systems significantly affects the performance of ultrasensitive and ultracompact spin-exchange relaxation-free atomic magnetometers. High frequency modulation detection helps effectively suppress the 1/f noise and enhance the signal-to-noise ratio, but conventional modulators are bulky and restrict the development of integrated atomic magnetometer modulation-detection systems. Resonant metasurface-based thin-film lithium-niobate (TFLN) active optics can modulate free-space light within a compact configuration. In this study, we demonstrate a TFLN metasurface platform that leverages guided mode resonance for efficient phase modulation, achieving a modulation amplitude of 0.063 rad at a frequency of 100 kHz. We exploit the resonance in the TFLN waveguide and obtain a high-quality factor of 166 at a resonant wavelength of 795.8 nm. Using the fabricated modulator, we achieve an optical rotation angle measurement sensitivity of 4×10-7 rad/Hz1/2 with the modulation. Compared to conventional bulky modulators, the modulator fabricated in this study realizes a more than 90% reduction in volume. This study provides a feasible approach for developing miniaturized integrated atomic magnetometers to achieve improved sensitivity through optical modulation techniques.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"4 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr04794j","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Low-frequency noise in detection systems significantly affects the performance of ultrasensitive and ultracompact spin-exchange relaxation-free atomic magnetometers. High frequency modulation detection helps effectively suppress the 1/f noise and enhance the signal-to-noise ratio, but conventional modulators are bulky and restrict the development of integrated atomic magnetometer modulation-detection systems. Resonant metasurface-based thin-film lithium-niobate (TFLN) active optics can modulate free-space light within a compact configuration. In this study, we demonstrate a TFLN metasurface platform that leverages guided mode resonance for efficient phase modulation, achieving a modulation amplitude of 0.063 rad at a frequency of 100 kHz. We exploit the resonance in the TFLN waveguide and obtain a high-quality factor of 166 at a resonant wavelength of 795.8 nm. Using the fabricated modulator, we achieve an optical rotation angle measurement sensitivity of 4×10-7 rad/Hz1/2 with the modulation. Compared to conventional bulky modulators, the modulator fabricated in this study realizes a more than 90% reduction in volume. This study provides a feasible approach for developing miniaturized integrated atomic magnetometers to achieve improved sensitivity through optical modulation techniques.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信