{"title":"Recent Advances in Nanoporous Organic Polymers (NPOPs) for Hydrogen Storage Applications","authors":"Shagufta Jabin, Sadiqa Abbas, Priti Gupta, Sapana Jadoun, Anupama Rajput, Prachika Rajput","doi":"10.1039/d4nr03623a","DOIUrl":null,"url":null,"abstract":"Nanoporous organic polymers (NPOPs) have emerged as versatile materials with robust thermal stability, large surface area (up to 2500 m²/g), and customizable porosity, making them ideal candidates for advanced hydrogen (H2) storage applications. This review provides a comprehensive analysis of various NPOPs, including covalent organic frameworks (COFs), hypercrosslinked polymers (HCLPs), conjugated microporous polymers (CMPs), and porous aromatic frameworks (POAFs). Notably, these materials demonstrate superior H2 storage capacities, achieving up to 10 wt% at cryogenic temperatures, which is essential for applying H2 as a clean energy carrier. The review also highlights recent advancements, such as integrating metal-organic frameworks (MOFs) into NPOPs, further enhancing storage capacities by up to 30%. Their multifaceted properties underpin various applications, from fuel storage and gas separation to water treatment and optical devices. This review explores the significance and versatility of NPOPs in H2 storage due to their unique properties and enhanced storage capacities. Additionally, recent advancements in utilizing NPOPs for H2 storage are highlighted with a detailed discussion of emerging trends and the synthesis of innovative NPOPs. The review concludes with a discussion of the advantages, applications, challenges, research, and future directions for research in this area.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"17 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr03623a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoporous organic polymers (NPOPs) have emerged as versatile materials with robust thermal stability, large surface area (up to 2500 m²/g), and customizable porosity, making them ideal candidates for advanced hydrogen (H2) storage applications. This review provides a comprehensive analysis of various NPOPs, including covalent organic frameworks (COFs), hypercrosslinked polymers (HCLPs), conjugated microporous polymers (CMPs), and porous aromatic frameworks (POAFs). Notably, these materials demonstrate superior H2 storage capacities, achieving up to 10 wt% at cryogenic temperatures, which is essential for applying H2 as a clean energy carrier. The review also highlights recent advancements, such as integrating metal-organic frameworks (MOFs) into NPOPs, further enhancing storage capacities by up to 30%. Their multifaceted properties underpin various applications, from fuel storage and gas separation to water treatment and optical devices. This review explores the significance and versatility of NPOPs in H2 storage due to their unique properties and enhanced storage capacities. Additionally, recent advancements in utilizing NPOPs for H2 storage are highlighted with a detailed discussion of emerging trends and the synthesis of innovative NPOPs. The review concludes with a discussion of the advantages, applications, challenges, research, and future directions for research in this area.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.