{"title":"Cu2O1–x-Superlattices Induced Oxygen Vacancy for Localized Surface Plasmon Resonance","authors":"Chang Yao, Haochuan Feng, Shirui Weng, Junxiang Li, Ying-Fei Huo, Wuwen Yan, Ronglu Dong, Liangbao Yang","doi":"10.1021/acs.nanolett.4c06330","DOIUrl":null,"url":null,"abstract":"Metallic oxide can induce localized surface plasmon resonance (LSPR) through creating vacancies, which effectively achieve high carrier concentrations and offer advantages such as versatility and tunability. However, vacancies are typically created by altering the stoichiometric ratio of elements through doping, and it is challenging to achieve LSPR enhancement in the visible spectral range. Here, we have assembled Cu<sub>2</sub>O<sub>1–<i>x</i></sub>-superlattices to induce a high concentration of oxygen vacancies, resulting in LSPR within the visible spectrum. Combining this technique with theoretical models, we have elucidated the mechanism behind the origin of LSPR. We also provide evidence of strong and uniform LSPR exhibited by this structure under visible light. This significantly enhances the electromagnetic field in semiconductor-based surface-enhanced Raman scattering (SERS), with a detection limit concentration reaching 10<sup>–9</sup> M compared to conventional gold nanoparticles (55 nm). Our strategy provides a new perspective and potential for controlling carrier concentration and generating LSPR in metal oxide nanoparticles.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"128 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c06330","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metallic oxide can induce localized surface plasmon resonance (LSPR) through creating vacancies, which effectively achieve high carrier concentrations and offer advantages such as versatility and tunability. However, vacancies are typically created by altering the stoichiometric ratio of elements through doping, and it is challenging to achieve LSPR enhancement in the visible spectral range. Here, we have assembled Cu2O1–x-superlattices to induce a high concentration of oxygen vacancies, resulting in LSPR within the visible spectrum. Combining this technique with theoretical models, we have elucidated the mechanism behind the origin of LSPR. We also provide evidence of strong and uniform LSPR exhibited by this structure under visible light. This significantly enhances the electromagnetic field in semiconductor-based surface-enhanced Raman scattering (SERS), with a detection limit concentration reaching 10–9 M compared to conventional gold nanoparticles (55 nm). Our strategy provides a new perspective and potential for controlling carrier concentration and generating LSPR in metal oxide nanoparticles.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.