{"title":"Nicotianamine facilitates zinc translocation from roots to shoots in the nickel hyperaccumulator Odontarrhena chalcidica","authors":"Teng-Hao-Bo Deng, Ya-Zhou Wang, Bing-Lan Mo, Ting Liu, Lei Li, Ye-Tao Tang, Dian Wen, Yong-Dong Huang, Sheng-Sheng Sun, Xu Wang, Rui-Ying Du, Jean-Louis Morel, Rong-Liang Qiu","doi":"10.1007/s11104-024-07176-7","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>Nickel (Ni) hyperaccumulator <i>Odontarrhena chalcidica</i> can absorb high levels of zinc (Zn) in its roots but fails to hyperaccumulate Zn in its shoots. The reasons behind the absence of this Zn hyperaccumulation trait in <i>O. chalcidica</i>, in contrast to known Zn hyperaccumulators, remain elusive. Nicotianamine (NA) is an organic ligand which can increase the mobility of metals in vivo by forming stable metals-NA complex. Thus, this study evaluated the influence of NA on root-shoot transport of Zn in <i>O. chalcidica</i> by comparison with the Zn hyperaccumulator <i>Noccaea caerulescens</i>.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Both species were cultivated under + Ni and + Zn treatments in hydroponic solutions. NA concentrations, the expression levels of NA synthesis related genes and Zn distribution in subcellular fractions of roots were evaluated. Additionally, the effect of exogenous NA supply on Zn transport was explored.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>NA concentrations in the roots of <i>O. chalcidica</i> declined from 2.30 to 0.600 mg kg<sup>−1</sup> under Zn exposure, whereas that of <i>N. caerulescens</i> significantly increased by 40.5% (to 3.09 mg kg<sup>−1</sup>). Zn treatment suppressed the expression of <i>OcNAS3</i> and <i>OcSAMS2</i>, which involved in NA biosynthesis, by 97.0% and 89.7%, respectively. Nevertheless, pretreatment with NA enhance soluble Zn fraction in roots, and increased root-shoot transport of Zn in <i>O. chalcidica</i>, raising the shoot-to-root Zn concentration ratio from 0.548 to 0.919.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>The inhibition of NA synthesis by Zn is an important reason for the impaired root-shoot transfer for Zn in <i>O. chalcidica</i>. And NA plays a key role on the Zn mobility within plants.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"17 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07176-7","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims
Nickel (Ni) hyperaccumulator Odontarrhena chalcidica can absorb high levels of zinc (Zn) in its roots but fails to hyperaccumulate Zn in its shoots. The reasons behind the absence of this Zn hyperaccumulation trait in O. chalcidica, in contrast to known Zn hyperaccumulators, remain elusive. Nicotianamine (NA) is an organic ligand which can increase the mobility of metals in vivo by forming stable metals-NA complex. Thus, this study evaluated the influence of NA on root-shoot transport of Zn in O. chalcidica by comparison with the Zn hyperaccumulator Noccaea caerulescens.
Methods
Both species were cultivated under + Ni and + Zn treatments in hydroponic solutions. NA concentrations, the expression levels of NA synthesis related genes and Zn distribution in subcellular fractions of roots were evaluated. Additionally, the effect of exogenous NA supply on Zn transport was explored.
Results
NA concentrations in the roots of O. chalcidica declined from 2.30 to 0.600 mg kg−1 under Zn exposure, whereas that of N. caerulescens significantly increased by 40.5% (to 3.09 mg kg−1). Zn treatment suppressed the expression of OcNAS3 and OcSAMS2, which involved in NA biosynthesis, by 97.0% and 89.7%, respectively. Nevertheless, pretreatment with NA enhance soluble Zn fraction in roots, and increased root-shoot transport of Zn in O. chalcidica, raising the shoot-to-root Zn concentration ratio from 0.548 to 0.919.
Conclusions
The inhibition of NA synthesis by Zn is an important reason for the impaired root-shoot transfer for Zn in O. chalcidica. And NA plays a key role on the Zn mobility within plants.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.