Maize shows intraspecific facilitation under phosphorus deficiency but competition under nitrogen deficiency when grown under increased plant densities in alkaline soil
{"title":"Maize shows intraspecific facilitation under phosphorus deficiency but competition under nitrogen deficiency when grown under increased plant densities in alkaline soil","authors":"Qi Shen, Jiatian Xiao, Liyang Wang, Jiguang Feng, Ying Chen, Biao Zhu, Haigang Li, Hans Lambers","doi":"10.1007/s11104-024-07188-3","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>Neighbouring plants compete for resources in intensive cropping systems when the plant density is high. Most studies on plant density have focused on yield responses, whereas only few studies have paid attention to belowground root-soil-interactions. Knowledge about belowground responses to different plant densities under nitrogen (N) or phosphorus (P) limitation remains scant.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Two pot experiments were conducted in a glasshouse using a calcareous soil (pH 8.4). Five treatments were applied with different amounts of N or P and planted with different plant densities. Shoot and root biomass, and root morphological traits including total root length and proportions of root length in different diameter classes were examined in both the N and P experiment. Root physiological traits including rhizosheath pH, phosphatase activity and carboxylate concentration were measured in the P experiment.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Plant biomass, P content and total root length increased with increasing plant density in the P experiment, while plant biomass, N content and total root length decreased with increasing plant density in the N experiment. Maize with high plant density released carboxylates and phosphatases under P deficiency.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Growing in calcareous soil, maize showed a competition effect at increasing plant density under N limitation, but an intraspecific facilitation effect at increasing plant density under P limitation. This study shows that maize (<i>Zea mays</i> L. cv. ZD958) released carboxylates and phosphatases in response to high soil pH under P-limiting conditions. The findings of this work are important towards the sustainability of intensive cropping systems.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"30 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07188-3","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims
Neighbouring plants compete for resources in intensive cropping systems when the plant density is high. Most studies on plant density have focused on yield responses, whereas only few studies have paid attention to belowground root-soil-interactions. Knowledge about belowground responses to different plant densities under nitrogen (N) or phosphorus (P) limitation remains scant.
Methods
Two pot experiments were conducted in a glasshouse using a calcareous soil (pH 8.4). Five treatments were applied with different amounts of N or P and planted with different plant densities. Shoot and root biomass, and root morphological traits including total root length and proportions of root length in different diameter classes were examined in both the N and P experiment. Root physiological traits including rhizosheath pH, phosphatase activity and carboxylate concentration were measured in the P experiment.
Results
Plant biomass, P content and total root length increased with increasing plant density in the P experiment, while plant biomass, N content and total root length decreased with increasing plant density in the N experiment. Maize with high plant density released carboxylates and phosphatases under P deficiency.
Conclusion
Growing in calcareous soil, maize showed a competition effect at increasing plant density under N limitation, but an intraspecific facilitation effect at increasing plant density under P limitation. This study shows that maize (Zea mays L. cv. ZD958) released carboxylates and phosphatases in response to high soil pH under P-limiting conditions. The findings of this work are important towards the sustainability of intensive cropping systems.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.