Xiaofei Shi, Anton Artemyev, Vassilis Angelopoulos, Terry Liu, Lynn B. Wilson III
{"title":"Compound electron acceleration at planetary foreshocks","authors":"Xiaofei Shi, Anton Artemyev, Vassilis Angelopoulos, Terry Liu, Lynn B. Wilson III","doi":"10.1038/s41467-024-55464-8","DOIUrl":null,"url":null,"abstract":"<p>Shock waves, the interface of supersonic and subsonic plasma flows, are the primary region for charged particle acceleration in multiple space plasma systems, including Earth’s bow shock, which is readily accessible for in-situ measurements. Spacecraft frequently observe relativistic electron populations within this region, characterized by energy levels surpassing those of solar wind electrons by a factor of 10,000 or more. However, mechanisms of such strong acceleration remain elusive. Here we use observations of electrons with energies up to 200 kiloelectron volts and a data-constrained model to reproduce the observed power-law electron spectrum and demonstrate that the acceleration by more than 4 orders of magnitude is a compound process including a complex, multi-step interaction between more commonly known mechanisms and resonant scattering by several distinct plasma wave modes. The proposed model of electron acceleration addresses a decades-long issue of the generation of energetic (and relativistic) electrons at planetary plasma shocks. This work may further guide numerical simulations of even more effective electron acceleration in astrophysical shocks.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"72 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55464-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Shock waves, the interface of supersonic and subsonic plasma flows, are the primary region for charged particle acceleration in multiple space plasma systems, including Earth’s bow shock, which is readily accessible for in-situ measurements. Spacecraft frequently observe relativistic electron populations within this region, characterized by energy levels surpassing those of solar wind electrons by a factor of 10,000 or more. However, mechanisms of such strong acceleration remain elusive. Here we use observations of electrons with energies up to 200 kiloelectron volts and a data-constrained model to reproduce the observed power-law electron spectrum and demonstrate that the acceleration by more than 4 orders of magnitude is a compound process including a complex, multi-step interaction between more commonly known mechanisms and resonant scattering by several distinct plasma wave modes. The proposed model of electron acceleration addresses a decades-long issue of the generation of energetic (and relativistic) electrons at planetary plasma shocks. This work may further guide numerical simulations of even more effective electron acceleration in astrophysical shocks.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.