Micro-scale mapping of soil organic carbon using soft X-ray spectromicroscopy

IF 15 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Maoz Dor, Tom Regier, Zachary Arthur, Andrey K. Guber, Alexandra N. Kravchenko
{"title":"Micro-scale mapping of soil organic carbon using soft X-ray spectromicroscopy","authors":"Maoz Dor, Tom Regier, Zachary Arthur, Andrey K. Guber, Alexandra N. Kravchenko","doi":"10.1007/s10311-024-01817-0","DOIUrl":null,"url":null,"abstract":"<p>Soil organic carbon is crucial for soil fertility, productivity, and global carbon cycling. Despite significant progress in understanding carbon persistence and turnover, the underlying mechanisms require further study. A key challenge is visualizing and characterizing the spatial distribution of carbon within intact soil. This study introduces a novel approach to map carbon content at 35 µm resolution and composition at 22 µm resolution in intact environmental samples using synchrotron X-ray spectromicroscopy. X-ray fluorescence maps provided an overview of total carbon distribution, identifying carbon-rich regions. Near-edge X-ray absorption fine structure spectromicroscopy was then used to obtain spatially resolved carbon speciation data within these regions. This method allowed the analysis of relatively large intact samples, of 16 mm in diameter and 15 mm in height, preserving various root and organic matter fragments as well as pores ranging between 35 and 850 µm. Spectral fitting with reference standards revealed distinct spatial patterns of aromatic, aliphatic, and carboxylic carbon compounds associated with different structural features. Aromatic carbon was enriched around root fragments and the soil matrix; while, carboxylic compounds were concentrated at pore–matrix interfaces, indicating a correlation between soil pore structure and carbon chemical composition. This novel approach provides significant insights into the interplay between pore architecture and organic molecular diversity, key factors governing carbon protection and persistence in soils.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"60 1","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10311-024-01817-0","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Soil organic carbon is crucial for soil fertility, productivity, and global carbon cycling. Despite significant progress in understanding carbon persistence and turnover, the underlying mechanisms require further study. A key challenge is visualizing and characterizing the spatial distribution of carbon within intact soil. This study introduces a novel approach to map carbon content at 35 µm resolution and composition at 22 µm resolution in intact environmental samples using synchrotron X-ray spectromicroscopy. X-ray fluorescence maps provided an overview of total carbon distribution, identifying carbon-rich regions. Near-edge X-ray absorption fine structure spectromicroscopy was then used to obtain spatially resolved carbon speciation data within these regions. This method allowed the analysis of relatively large intact samples, of 16 mm in diameter and 15 mm in height, preserving various root and organic matter fragments as well as pores ranging between 35 and 850 µm. Spectral fitting with reference standards revealed distinct spatial patterns of aromatic, aliphatic, and carboxylic carbon compounds associated with different structural features. Aromatic carbon was enriched around root fragments and the soil matrix; while, carboxylic compounds were concentrated at pore–matrix interfaces, indicating a correlation between soil pore structure and carbon chemical composition. This novel approach provides significant insights into the interplay between pore architecture and organic molecular diversity, key factors governing carbon protection and persistence in soils.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Chemistry Letters
Environmental Chemistry Letters 环境科学-工程:环境
CiteScore
32.00
自引率
7.00%
发文量
175
审稿时长
2 months
期刊介绍: Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信