Polymerization of dietary fructans differentially affects interactions among intestinal microbiota of colitis mice

Yaqin Xiao, Qianyun Zhao, Dawei Ni, Xiaoqi Zhang, Wei Hao, Qin Yuan, Wei Xu, Wanmeng Mu, Dingtao Wu, Xu Wu, Shengpeng Wang
{"title":"Polymerization of dietary fructans differentially affects interactions among intestinal microbiota of colitis mice","authors":"Yaqin Xiao, Qianyun Zhao, Dawei Ni, Xiaoqi Zhang, Wei Hao, Qin Yuan, Wei Xu, Wanmeng Mu, Dingtao Wu, Xu Wu, Shengpeng Wang","doi":"10.1093/ismejo/wrae262","DOIUrl":null,"url":null,"abstract":"The intestinal microbiota plays a critical role in maintaining human health and can be modulated by dietary interventions and lifestyle choices. Fructans, a dietary carbohydrate, are selectively utilized by the intestinal microbiota to confer health benefits. However, the specific effects of different fructan types on microbial changes and functions remain incompletely understood. Here, we investigated how the intestinal microbiota responds to fructans with varying degrees of polymerization in the context of gut dysbiosis. Both low molecular weight fructo-oligosaccharides and high molecular weight levan suppressed intestinal inflammation in a colitis mouse model, mitigating intestinal fibrosis and dysbiosis. Although both the effects of fructo-oligosaccharides and levan are microbiota-dependent, distinct modulation patterns of the intestinal microbiota were observed based on the molecular weight of the fructans. Levan had a more pronounced and persistent impact on gut microbiota compared to fructo-oligosaccharides. Levan particularly promoted the abundance of Dubosiella newyorkensis, which exhibited preventive effects against colitis. Our findings highlight the importance of polymerization levels of dietary fructans in microbiota alterations and identify Dubosiella newyorkensis as a potential probiotic for treating inflammatory diseases.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The intestinal microbiota plays a critical role in maintaining human health and can be modulated by dietary interventions and lifestyle choices. Fructans, a dietary carbohydrate, are selectively utilized by the intestinal microbiota to confer health benefits. However, the specific effects of different fructan types on microbial changes and functions remain incompletely understood. Here, we investigated how the intestinal microbiota responds to fructans with varying degrees of polymerization in the context of gut dysbiosis. Both low molecular weight fructo-oligosaccharides and high molecular weight levan suppressed intestinal inflammation in a colitis mouse model, mitigating intestinal fibrosis and dysbiosis. Although both the effects of fructo-oligosaccharides and levan are microbiota-dependent, distinct modulation patterns of the intestinal microbiota were observed based on the molecular weight of the fructans. Levan had a more pronounced and persistent impact on gut microbiota compared to fructo-oligosaccharides. Levan particularly promoted the abundance of Dubosiella newyorkensis, which exhibited preventive effects against colitis. Our findings highlight the importance of polymerization levels of dietary fructans in microbiota alterations and identify Dubosiella newyorkensis as a potential probiotic for treating inflammatory diseases.
膳食果糖聚合对结肠炎小鼠肠道菌群相互作用的影响存在差异
肠道微生物群在维持人体健康方面发挥着关键作用,可以通过饮食干预和生活方式的选择来调节。果聚糖是一种膳食碳水化合物,被肠道微生物群选择性地利用,赋予健康益处。然而,不同类型的果聚糖对微生物变化和功能的具体影响仍不完全清楚。在这里,我们研究了肠道微生物群如何在肠道生态失调的背景下对不同程度聚合的果聚糖做出反应。在结肠炎小鼠模型中,低分子量低聚果糖和高分子量李凡均可抑制肠道炎症,减轻肠道纤维化和生态失调。尽管低聚果糖和利末的作用都依赖于肠道菌群,但根据低聚果糖的分子量,可以观察到肠道菌群的不同调节模式。与低聚果糖相比,Levan对肠道微生物群的影响更为明显和持久。Levan特别促进了Dubosiella newyorksis的丰富,它显示出对结肠炎的预防作用。我们的研究结果强调了膳食果聚糖聚合水平在微生物群改变中的重要性,并确定了纽约杜波氏菌作为治疗炎症性疾病的潜在益生菌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信