Relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization, energy metabolism, and gut microbiota in growing pigs
IF 7 1区 农林科学Q1 Agricultural and Biological Sciences
Feng Yong, Bo Liu, Huijuan Li, Houxu Hao, Yueli Fan, Osmond Datsomor, Rui Han, Hailong Jiang, Dongsheng Che
{"title":"Relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization, energy metabolism, and gut microbiota in growing pigs","authors":"Feng Yong, Bo Liu, Huijuan Li, Houxu Hao, Yueli Fan, Osmond Datsomor, Rui Han, Hailong Jiang, Dongsheng Che","doi":"10.1186/s40104-024-01129-x","DOIUrl":null,"url":null,"abstract":"There is a growing focus on using various plant-derived agricultural by-products to increase the benefits of pig farming, but these feedstuffs are fibrous in nature. This study investigated the relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization, energy metabolism, and gut microbiota in growing pigs. Thirty-six growing barrows (47.2 ± 1.5 kg) were randomly allotted to 6 dietary treatments with 2 apparent viscosity levels and 3 β-glucan-to-arabinoxylan ratios. In the experiment, nutrient utilization, energy metabolism, fecal microbial community, and production and absorption of short-chain fatty acid (SCFA) of pigs were investigated. In vitro digestion and fermentation models were used to compare the fermentation characteristics of feedstuffs and ileal digesta in the pig’s hindgut. The production dynamics of SCFA and dry matter corrected gas production of different feedstuffs during in vitro fermentation were different and closely related to the physical properties and chemical structure of the fiber. In animal experiments, increasing the dietary apparent viscosity and the β-glucan-to-arabinoxylan ratios both increased the apparent ileal digestibility (AID), apparent total tract digestibility (ATTD), and hindgut digestibility of fiber components while decreasing the AID and ATTD of dry matter and organic matter (P < 0.05). In addition, increasing dietary apparent viscosity and β-glucan-to-arabinoxylan ratios both increased gas exchange, heat production, and protein oxidation, and decreased energy deposition (P < 0.05). The dietary apparent viscosity and β-glucan-to-arabinoxylan ratios had linear interaction effects on the digestible energy, metabolizable energy, retained energy (RE), and net energy (NE) of the diets (P < 0.05). At the same time, the increase of dietary apparent viscosity and β-glucan-to-arabinoxylan ratios both increased SCFA production and absorption (P < 0.05). Increasing the dietary apparent viscosity and β-glucan-to-arabinoxylan ratios increased the diversity and abundance of bacteria (P < 0.05) and the relative abundance of beneficial bacteria. Furthermore, increasing the dietary β-glucan-to-arabinoxylan ratios led to a linear increase in SCFA production during the in vitro fermentation of ileal digesta (P < 0.001). Finally, the prediction equations for RE and NE were established. Dietary fiber physicochemical properties alter dietary fermentation patterns and regulate nutrient utilization, energy metabolism, and pig gut microbiota composition and metabolites.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"1 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s40104-024-01129-x","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
There is a growing focus on using various plant-derived agricultural by-products to increase the benefits of pig farming, but these feedstuffs are fibrous in nature. This study investigated the relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization, energy metabolism, and gut microbiota in growing pigs. Thirty-six growing barrows (47.2 ± 1.5 kg) were randomly allotted to 6 dietary treatments with 2 apparent viscosity levels and 3 β-glucan-to-arabinoxylan ratios. In the experiment, nutrient utilization, energy metabolism, fecal microbial community, and production and absorption of short-chain fatty acid (SCFA) of pigs were investigated. In vitro digestion and fermentation models were used to compare the fermentation characteristics of feedstuffs and ileal digesta in the pig’s hindgut. The production dynamics of SCFA and dry matter corrected gas production of different feedstuffs during in vitro fermentation were different and closely related to the physical properties and chemical structure of the fiber. In animal experiments, increasing the dietary apparent viscosity and the β-glucan-to-arabinoxylan ratios both increased the apparent ileal digestibility (AID), apparent total tract digestibility (ATTD), and hindgut digestibility of fiber components while decreasing the AID and ATTD of dry matter and organic matter (P < 0.05). In addition, increasing dietary apparent viscosity and β-glucan-to-arabinoxylan ratios both increased gas exchange, heat production, and protein oxidation, and decreased energy deposition (P < 0.05). The dietary apparent viscosity and β-glucan-to-arabinoxylan ratios had linear interaction effects on the digestible energy, metabolizable energy, retained energy (RE), and net energy (NE) of the diets (P < 0.05). At the same time, the increase of dietary apparent viscosity and β-glucan-to-arabinoxylan ratios both increased SCFA production and absorption (P < 0.05). Increasing the dietary apparent viscosity and β-glucan-to-arabinoxylan ratios increased the diversity and abundance of bacteria (P < 0.05) and the relative abundance of beneficial bacteria. Furthermore, increasing the dietary β-glucan-to-arabinoxylan ratios led to a linear increase in SCFA production during the in vitro fermentation of ileal digesta (P < 0.001). Finally, the prediction equations for RE and NE were established. Dietary fiber physicochemical properties alter dietary fermentation patterns and regulate nutrient utilization, energy metabolism, and pig gut microbiota composition and metabolites.
期刊介绍:
Journal of Animal Science and Biotechnology is an open access, peer-reviewed journal that encompasses all aspects of animal science and biotechnology. That includes domestic animal production, animal genetics and breeding, animal reproduction and physiology, animal nutrition and biochemistry, feed processing technology and bioevaluation, animal biotechnology, and meat science.