Two decades of bacterial ecology and evolution in a freshwater lake

IF 20.5 1区 生物学 Q1 MICROBIOLOGY
Robin R. Rohwer, Mark Kirkpatrick, Sarahi L. Garcia, Matthew Kellom, Katherine D. McMahon, Brett J. Baker
{"title":"Two decades of bacterial ecology and evolution in a freshwater lake","authors":"Robin R. Rohwer, Mark Kirkpatrick, Sarahi L. Garcia, Matthew Kellom, Katherine D. McMahon, Brett J. Baker","doi":"10.1038/s41564-024-01888-3","DOIUrl":null,"url":null,"abstract":"<p>Ecology and evolution are considered distinct processes that interact on contemporary time scales in microbiomes. Here, to observe these processes in a natural system, we collected a two-decade, 471-metagenome time series from Lake Mendota (Wisconsin, USA). We assembled 2,855 species-representative genomes and found that genomic change was common and frequent. By tracking strain composition via single nucleotide variants, we identified cyclical seasonal patterns in 80% and decadal shifts in 20% of species. In the dominant freshwater family <i>Nanopelagicaceae</i>, environmental extremes coincided with shifts in strain composition and positive selection of amino acid and nucleic acid metabolism genes. These genes identify organic nitrogen compounds as potential drivers of freshwater responses to global change. Seasonal and long-term strain dynamics could be regarded as ecological processes or, equivalently, as evolutionary change. Rather than as distinct interacting processes, we propose a conceptualization of ecology and evolution as a continuum to better describe change in microbial communities.</p>","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"34 1","pages":""},"PeriodicalIF":20.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41564-024-01888-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ecology and evolution are considered distinct processes that interact on contemporary time scales in microbiomes. Here, to observe these processes in a natural system, we collected a two-decade, 471-metagenome time series from Lake Mendota (Wisconsin, USA). We assembled 2,855 species-representative genomes and found that genomic change was common and frequent. By tracking strain composition via single nucleotide variants, we identified cyclical seasonal patterns in 80% and decadal shifts in 20% of species. In the dominant freshwater family Nanopelagicaceae, environmental extremes coincided with shifts in strain composition and positive selection of amino acid and nucleic acid metabolism genes. These genes identify organic nitrogen compounds as potential drivers of freshwater responses to global change. Seasonal and long-term strain dynamics could be regarded as ecological processes or, equivalently, as evolutionary change. Rather than as distinct interacting processes, we propose a conceptualization of ecology and evolution as a continuum to better describe change in microbial communities.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Microbiology
Nature Microbiology Immunology and Microbiology-Microbiology
CiteScore
44.40
自引率
1.10%
发文量
226
期刊介绍: Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes: Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time. Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes. Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments. Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation. In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信