Comprehensive genomic characterization of early-stage bladder cancer

IF 31.7 1区 生物学 Q1 GENETICS & HEREDITY
Frederik Prip, Philippe Lamy, Sia Viborg Lindskrog, Trine Strandgaard, Iver Nordentoft, Karin Birkenkamp-Demtröder, Nicolai Juul Birkbak, Nanna Kristjánsdóttir, Asbjørn Kjær, Tine G. Andreasen, Johanne Ahrenfeldt, Jakob Skou Pedersen, Asta Mannstaedt Rasmussen, Gregers G. Hermann, Karin Mogensen, Astrid C. Petersen, Arndt Hartmann, Marc-Oliver Grimm, Marcus Horstmann, Roman Nawroth, Ulrika Segersten, Danijel Sikic, Kim E. M. van Kessel, Ellen C. Zwarthoff, Tobias Maurer, Tatjana Simic, Per-Uno Malmström, Núria Malats, Jørgen Bjerggaard Jensen, Francisco X. Real, Lars Dyrskjøt
{"title":"Comprehensive genomic characterization of early-stage bladder cancer","authors":"Frederik Prip, Philippe Lamy, Sia Viborg Lindskrog, Trine Strandgaard, Iver Nordentoft, Karin Birkenkamp-Demtröder, Nicolai Juul Birkbak, Nanna Kristjánsdóttir, Asbjørn Kjær, Tine G. Andreasen, Johanne Ahrenfeldt, Jakob Skou Pedersen, Asta Mannstaedt Rasmussen, Gregers G. Hermann, Karin Mogensen, Astrid C. Petersen, Arndt Hartmann, Marc-Oliver Grimm, Marcus Horstmann, Roman Nawroth, Ulrika Segersten, Danijel Sikic, Kim E. M. van Kessel, Ellen C. Zwarthoff, Tobias Maurer, Tatjana Simic, Per-Uno Malmström, Núria Malats, Jørgen Bjerggaard Jensen, Francisco X. Real, Lars Dyrskjøt","doi":"10.1038/s41588-024-02030-z","DOIUrl":null,"url":null,"abstract":"<p>Understanding the molecular landscape of nonmuscle-invasive bladder cancer (NMIBC) is essential to improve risk assessment and treatment regimens. We performed a comprehensive genomic analysis of patients with NMIBC using whole-exome sequencing (<i>n</i> = 438), shallow whole-genome sequencing (<i>n</i> = 362) and total RNA sequencing (<i>n</i> = 414). A large genomic variation within NMIBC was observed and correlated with different molecular subtypes. Frequent loss of heterozygosity in <i>FGFR3</i> and 17p (affecting <i>TP53</i>) was found in tumors with mutations in <i>FGFR3</i> and <i>TP53</i>, respectively. Whole-genome doubling (WGD) was observed in 15% of the tumors and was associated with worse outcomes. Tumors with WGD were genomically unstable, with alterations in cell-cycle-related genes and an altered immune composition. Finally, integrative clustering of multi-omics data highlighted the important role of genomic instability and immune cell exhaustion in disease aggressiveness. These findings advance our understanding of genomic differences associated with disease aggressiveness in NMIBC and may ultimately improve patient stratification.</p>","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"36 1","pages":""},"PeriodicalIF":31.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41588-024-02030-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the molecular landscape of nonmuscle-invasive bladder cancer (NMIBC) is essential to improve risk assessment and treatment regimens. We performed a comprehensive genomic analysis of patients with NMIBC using whole-exome sequencing (n = 438), shallow whole-genome sequencing (n = 362) and total RNA sequencing (n = 414). A large genomic variation within NMIBC was observed and correlated with different molecular subtypes. Frequent loss of heterozygosity in FGFR3 and 17p (affecting TP53) was found in tumors with mutations in FGFR3 and TP53, respectively. Whole-genome doubling (WGD) was observed in 15% of the tumors and was associated with worse outcomes. Tumors with WGD were genomically unstable, with alterations in cell-cycle-related genes and an altered immune composition. Finally, integrative clustering of multi-omics data highlighted the important role of genomic instability and immune cell exhaustion in disease aggressiveness. These findings advance our understanding of genomic differences associated with disease aggressiveness in NMIBC and may ultimately improve patient stratification.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature genetics
Nature genetics 生物-遗传学
CiteScore
43.00
自引率
2.60%
发文量
241
审稿时长
3 months
期刊介绍: Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation. Integrative genetic topics comprise, but are not limited to: -Genes in the pathology of human disease -Molecular analysis of simple and complex genetic traits -Cancer genetics -Agricultural genomics -Developmental genetics -Regulatory variation in gene expression -Strategies and technologies for extracting function from genomic data -Pharmacological genomics -Genome evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信