Frederik Prip, Philippe Lamy, Sia Viborg Lindskrog, Trine Strandgaard, Iver Nordentoft, Karin Birkenkamp-Demtröder, Nicolai Juul Birkbak, Nanna Kristjánsdóttir, Asbjørn Kjær, Tine G. Andreasen, Johanne Ahrenfeldt, Jakob Skou Pedersen, Asta Mannstaedt Rasmussen, Gregers G. Hermann, Karin Mogensen, Astrid C. Petersen, Arndt Hartmann, Marc-Oliver Grimm, Marcus Horstmann, Roman Nawroth, Ulrika Segersten, Danijel Sikic, Kim E. M. van Kessel, Ellen C. Zwarthoff, Tobias Maurer, Tatjana Simic, Per-Uno Malmström, Núria Malats, Jørgen Bjerggaard Jensen, Francisco X. Real, Lars Dyrskjøt
{"title":"Comprehensive genomic characterization of early-stage bladder cancer","authors":"Frederik Prip, Philippe Lamy, Sia Viborg Lindskrog, Trine Strandgaard, Iver Nordentoft, Karin Birkenkamp-Demtröder, Nicolai Juul Birkbak, Nanna Kristjánsdóttir, Asbjørn Kjær, Tine G. Andreasen, Johanne Ahrenfeldt, Jakob Skou Pedersen, Asta Mannstaedt Rasmussen, Gregers G. Hermann, Karin Mogensen, Astrid C. Petersen, Arndt Hartmann, Marc-Oliver Grimm, Marcus Horstmann, Roman Nawroth, Ulrika Segersten, Danijel Sikic, Kim E. M. van Kessel, Ellen C. Zwarthoff, Tobias Maurer, Tatjana Simic, Per-Uno Malmström, Núria Malats, Jørgen Bjerggaard Jensen, Francisco X. Real, Lars Dyrskjøt","doi":"10.1038/s41588-024-02030-z","DOIUrl":null,"url":null,"abstract":"<p>Understanding the molecular landscape of nonmuscle-invasive bladder cancer (NMIBC) is essential to improve risk assessment and treatment regimens. We performed a comprehensive genomic analysis of patients with NMIBC using whole-exome sequencing (<i>n</i> = 438), shallow whole-genome sequencing (<i>n</i> = 362) and total RNA sequencing (<i>n</i> = 414). A large genomic variation within NMIBC was observed and correlated with different molecular subtypes. Frequent loss of heterozygosity in <i>FGFR3</i> and 17p (affecting <i>TP53</i>) was found in tumors with mutations in <i>FGFR3</i> and <i>TP53</i>, respectively. Whole-genome doubling (WGD) was observed in 15% of the tumors and was associated with worse outcomes. Tumors with WGD were genomically unstable, with alterations in cell-cycle-related genes and an altered immune composition. Finally, integrative clustering of multi-omics data highlighted the important role of genomic instability and immune cell exhaustion in disease aggressiveness. These findings advance our understanding of genomic differences associated with disease aggressiveness in NMIBC and may ultimately improve patient stratification.</p>","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"36 1","pages":""},"PeriodicalIF":31.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41588-024-02030-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the molecular landscape of nonmuscle-invasive bladder cancer (NMIBC) is essential to improve risk assessment and treatment regimens. We performed a comprehensive genomic analysis of patients with NMIBC using whole-exome sequencing (n = 438), shallow whole-genome sequencing (n = 362) and total RNA sequencing (n = 414). A large genomic variation within NMIBC was observed and correlated with different molecular subtypes. Frequent loss of heterozygosity in FGFR3 and 17p (affecting TP53) was found in tumors with mutations in FGFR3 and TP53, respectively. Whole-genome doubling (WGD) was observed in 15% of the tumors and was associated with worse outcomes. Tumors with WGD were genomically unstable, with alterations in cell-cycle-related genes and an altered immune composition. Finally, integrative clustering of multi-omics data highlighted the important role of genomic instability and immune cell exhaustion in disease aggressiveness. These findings advance our understanding of genomic differences associated with disease aggressiveness in NMIBC and may ultimately improve patient stratification.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution