Suppression of Bogoliubov momentum pairing and emergence of non-Gaussian correlations in ultracold interacting Bose gases

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Jan-Philipp Bureik, Gaétan Hercé, Maxime Allemand, Antoine Tenart, Tommaso Roscilde, David Clément
{"title":"Suppression of Bogoliubov momentum pairing and emergence of non-Gaussian correlations in ultracold interacting Bose gases","authors":"Jan-Philipp Bureik, Gaétan Hercé, Maxime Allemand, Antoine Tenart, Tommaso Roscilde, David Clément","doi":"10.1038/s41567-024-02700-z","DOIUrl":null,"url":null,"abstract":"<p>Strongly correlated quantum matter, such as interacting electron systems or interacting quantum fluids, exhibits properties that defy explanation in terms of linear fluctuations and free quasiparticles. In these systems, quantum fluctuations are large and generically display non-Gaussian statistics—a property captured only by inspecting high-order correlations, whose quantitative reconstruction presents a challenge for both experiments and theory. A prime example of correlated quantum matter is the strongly interacting Bose fluid, realized first in superfluid helium and, more recently, in ultracold atoms. Here, we experimentally study interacting Bose gases from the weakly to the strongly interacting regime through single-atom-resolved correlations in momentum space. We find that the Bogoliubov pairing among modes of opposite momenta, characteristic of the weakly interacting regime, is suppressed as interactions grow. This departure from the predictions of Bogoliubov theory marks the onset of the strongly correlated regime, as confirmed by numerical simulations that highlight the role of nonlinear quantum fluctuations in our system. Furthermore, our measurements reveal a non-zero four-operator cumulant at even stronger interactions, which is a direct signature of non-Gaussian correlations. These results shed light on the emergence and physical origin of non-Gaussian correlations in ensembles of interacting bosons.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"24 4 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-024-02700-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Strongly correlated quantum matter, such as interacting electron systems or interacting quantum fluids, exhibits properties that defy explanation in terms of linear fluctuations and free quasiparticles. In these systems, quantum fluctuations are large and generically display non-Gaussian statistics—a property captured only by inspecting high-order correlations, whose quantitative reconstruction presents a challenge for both experiments and theory. A prime example of correlated quantum matter is the strongly interacting Bose fluid, realized first in superfluid helium and, more recently, in ultracold atoms. Here, we experimentally study interacting Bose gases from the weakly to the strongly interacting regime through single-atom-resolved correlations in momentum space. We find that the Bogoliubov pairing among modes of opposite momenta, characteristic of the weakly interacting regime, is suppressed as interactions grow. This departure from the predictions of Bogoliubov theory marks the onset of the strongly correlated regime, as confirmed by numerical simulations that highlight the role of nonlinear quantum fluctuations in our system. Furthermore, our measurements reveal a non-zero four-operator cumulant at even stronger interactions, which is a direct signature of non-Gaussian correlations. These results shed light on the emergence and physical origin of non-Gaussian correlations in ensembles of interacting bosons.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信