Ferrimagnetic Heusler tunnel junctions with fast spin-transfer torque switching enabled by low magnetization

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chirag Garg, Panagiotis Ch. Filippou, Ikhtiar, Yari Ferrante, See-Hun Yang, Brian Hughes, Charles T. Rettner, Timothy Phung, Sergey Faleev, Teya Topuria, Mahesh G. Samant, Jaewoo Jeong, Stuart S. P. Parkin
{"title":"Ferrimagnetic Heusler tunnel junctions with fast spin-transfer torque switching enabled by low magnetization","authors":"Chirag Garg, Panagiotis Ch. Filippou, Ikhtiar, Yari Ferrante, See-Hun Yang, Brian Hughes, Charles T. Rettner, Timothy Phung, Sergey Faleev, Teya Topuria, Mahesh G. Samant, Jaewoo Jeong, Stuart S. P. Parkin","doi":"10.1038/s41565-024-01827-7","DOIUrl":null,"url":null,"abstract":"<p>Magnetic random-access memory that uses magnetic tunnel junction memory cells is a high-performance, non-volatile memory technology that goes beyond traditional charge-based memories. Today, its speed is limited by the high magnetization of the memory storage layer. Here we prepare magnetic tunnel junction memory devices with a low magnetization ferrimagnetic Heusler alloy Mn<sub>3</sub>Ge as the memory storage layer on technologically relevant amorphous substrates using a combination of a nitride seed layer and a chemical templating layer. We switch the magnetic state of the storage layer with nanosecond long write pulses at a reliable write error rate of 10<sup>−7</sup> and detect a tunnelling magnetoresistance of 87% at ambient temperature. These results provide a strategy towards lower write switching currents using ferrimagnetic Heusler materials and, therefore, to the scaling of high-performance magnetic random-access memories beyond those nodes possible with ferromagnetic memory layers.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"17 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-024-01827-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic random-access memory that uses magnetic tunnel junction memory cells is a high-performance, non-volatile memory technology that goes beyond traditional charge-based memories. Today, its speed is limited by the high magnetization of the memory storage layer. Here we prepare magnetic tunnel junction memory devices with a low magnetization ferrimagnetic Heusler alloy Mn3Ge as the memory storage layer on technologically relevant amorphous substrates using a combination of a nitride seed layer and a chemical templating layer. We switch the magnetic state of the storage layer with nanosecond long write pulses at a reliable write error rate of 10−7 and detect a tunnelling magnetoresistance of 87% at ambient temperature. These results provide a strategy towards lower write switching currents using ferrimagnetic Heusler materials and, therefore, to the scaling of high-performance magnetic random-access memories beyond those nodes possible with ferromagnetic memory layers.

Abstract Image

具有快速自旋传递转矩开关的铁磁赫斯勒隧道结,可通过低磁化实现
磁性随机存取存储器采用磁性隧道结存储单元,是一种超越传统电荷存储器的高性能、非易失性存储器技术。今天,它的速度受到内存存储层的高磁化的限制。本文采用氮化物种子层和化学模板层相结合的方法,在技术相关的非晶基板上制备了以低磁化铁磁性Heusler合金Mn3Ge为存储层的磁隧道结存储器件。我们用纳秒级的长写入脉冲切换存储层的磁态,可靠的写入错误率为10−7,并在环境温度下检测到87%的隧穿磁电阻。这些结果为使用铁磁Heusler材料降低写入开关电流提供了一种策略,因此,在铁磁存储层可能的节点之外扩展高性能磁性随机存取存储器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信