From light sensing to adaptive learning: hafnium diselenide reconfigurable memcapacitive devices in neuromorphic computing

IF 20.6 Q1 OPTICS
Bashayr Alqahtani, Hanrui Li, Abdul Momin Syed, Nazek El-Atab
{"title":"From light sensing to adaptive learning: hafnium diselenide reconfigurable memcapacitive devices in neuromorphic computing","authors":"Bashayr Alqahtani, Hanrui Li, Abdul Momin Syed, Nazek El-Atab","doi":"10.1038/s41377-024-01698-6","DOIUrl":null,"url":null,"abstract":"<p>Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior, dynamic responses, and energy efficiency characteristics. Although charge-based or emerging memory technologies such as memristors have been developed to emulate synaptic plasticity, replicating the key functionality of neurons—integrating diverse presynaptic inputs to fire electrical impulses—has remained challenging. In this study, we developed reconfigurable metal-oxide-semiconductor capacitors (MOSCaps) based on hafnium diselenide (HfSe<sub>2</sub>). The proposed devices exhibit (1) optoelectronic synaptic features and perform separate stimulus-associated learning, indicating considerable adaptive neuron emulation, (2) dual light-enabled charge-trapping and memcapacitive behavior within the same MOSCap device, whose threshold voltage and capacitance vary based on the light intensity across the visible spectrum, (3) memcapacitor volatility tuning based on the biasing conditions, enabling the transition from volatile light sensing to non-volatile optical data retention. The reconfigurability and multifunctionality of MOSCap were used to integrate the device into a leaky integrate-and-fire neuron model within a spiking neural network to dynamically adjust firing patterns based on light stimuli and detect exoplanets through variations in light intensity.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"6 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01698-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior, dynamic responses, and energy efficiency characteristics. Although charge-based or emerging memory technologies such as memristors have been developed to emulate synaptic plasticity, replicating the key functionality of neurons—integrating diverse presynaptic inputs to fire electrical impulses—has remained challenging. In this study, we developed reconfigurable metal-oxide-semiconductor capacitors (MOSCaps) based on hafnium diselenide (HfSe2). The proposed devices exhibit (1) optoelectronic synaptic features and perform separate stimulus-associated learning, indicating considerable adaptive neuron emulation, (2) dual light-enabled charge-trapping and memcapacitive behavior within the same MOSCap device, whose threshold voltage and capacitance vary based on the light intensity across the visible spectrum, (3) memcapacitor volatility tuning based on the biasing conditions, enabling the transition from volatile light sensing to non-volatile optical data retention. The reconfigurability and multifunctionality of MOSCap were used to integrate the device into a leaky integrate-and-fire neuron model within a spiking neural network to dynamically adjust firing patterns based on light stimuli and detect exoplanets through variations in light intensity.

Abstract Image

从光感测到自适应学习:神经形态计算中的二硒化铪可重构记忆电容器件
神经形态计算的进步推动了具有自适应行为、动态响应和能效特征的系统的发展。尽管基于电荷的或新兴的记忆技术,如记忆电阻器,已经被开发出来模拟突触的可塑性,但复制神经元的关键功能——整合不同的突触前输入来发射电脉冲——仍然是一个挑战。在这项研究中,我们开发了基于二硒化铪(HfSe2)的可重构金属氧化物半导体电容器(MOSCaps)。所提出的器件具有(1)光电突触特征,并执行单独的刺激相关学习,表明相当大的自适应神经元仿真;(2)在同一MOSCap器件中具有双光使能电荷捕获和mem电容行为,其阈值电压和电容根据可见光谱上的光强而变化;(3)基于偏置条件的mem电容挥发性调节。实现从易失性光感测到非易失性光数据保留的过渡。利用MOSCap的可重构性和多功能性,将其集成到脉冲神经网络中的泄漏集成-发射神经元模型中,根据光刺激动态调整发射模式,并通过光强变化检测系外行星。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信