High-integrated photonic tensor core utilizing high-dimensional lightwave and microwave multidomain multiplexing

IF 20.6 Q1 OPTICS
Xiangyan Meng, Nuannuan Shi, Guojie Zhang, Junshen Li, Ye Jin, Shiyou Sun, Yichen Shen, Wei Li, Ninghua Zhu, Ming Li
{"title":"High-integrated photonic tensor core utilizing high-dimensional lightwave and microwave multidomain multiplexing","authors":"Xiangyan Meng, Nuannuan Shi, Guojie Zhang, Junshen Li, Ye Jin, Shiyou Sun, Yichen Shen, Wei Li, Ninghua Zhu, Ming Li","doi":"10.1038/s41377-024-01706-9","DOIUrl":null,"url":null,"abstract":"<p>The burgeoning volume of parameters in artificial neural network models has posed substantial challenges to conventional tensor computing hardware. Benefiting from the available optical multidimensional information entropy, optical intelligent computing is used as an alternative solution to address the emerging challenges of electrical computing. These limitations, in terms of device size and photonic integration scale, have hindered the performance of optical chips. Herein, an ultrahigh computing density optical tensor processing unit (OTPU), which is grounded in an individual microring resonator (MRR), is introduced to respond to these challenges. Through the independent tuning of multiwavelength lasers, the operational capabilities of an MRR are orchestrated, culminating in the formation of an optical tensor core. This design facilitates the execution of tensor convolution operations via the lightwave and microwave multidomain hybrid multiplexing in terms of the time, wavelength, and frequency of microwaves. The experimental results for the MRR-based OTPU show an extraordinary computing density of 34.04 TOPS/mm<sup>2</sup>. Additionally, the achieved accuracy rate in recognizing MNIST handwritten digits was 96.41%. These outcomes signify a significant advancement toward the realization of high-performance optical tensor processing chips.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"24 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01706-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The burgeoning volume of parameters in artificial neural network models has posed substantial challenges to conventional tensor computing hardware. Benefiting from the available optical multidimensional information entropy, optical intelligent computing is used as an alternative solution to address the emerging challenges of electrical computing. These limitations, in terms of device size and photonic integration scale, have hindered the performance of optical chips. Herein, an ultrahigh computing density optical tensor processing unit (OTPU), which is grounded in an individual microring resonator (MRR), is introduced to respond to these challenges. Through the independent tuning of multiwavelength lasers, the operational capabilities of an MRR are orchestrated, culminating in the formation of an optical tensor core. This design facilitates the execution of tensor convolution operations via the lightwave and microwave multidomain hybrid multiplexing in terms of the time, wavelength, and frequency of microwaves. The experimental results for the MRR-based OTPU show an extraordinary computing density of 34.04 TOPS/mm2. Additionally, the achieved accuracy rate in recognizing MNIST handwritten digits was 96.41%. These outcomes signify a significant advancement toward the realization of high-performance optical tensor processing chips.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信