Edward J. Thomas, Virginia N. Ciriano-Tejel, David F. Wise, Domenic Prete, Mathieu de Kruijf, David J. Ibberson, Grayson M. Noah, Alberto Gomez-Saiz, M. Fernando Gonzalez-Zalba, Mark A. I. Johnson, John J. L. Morton
{"title":"Rapid cryogenic characterization of 1,024 integrated silicon quantum dot devices","authors":"Edward J. Thomas, Virginia N. Ciriano-Tejel, David F. Wise, Domenic Prete, Mathieu de Kruijf, David J. Ibberson, Grayson M. Noah, Alberto Gomez-Saiz, M. Fernando Gonzalez-Zalba, Mark A. I. Johnson, John J. L. Morton","doi":"10.1038/s41928-024-01304-y","DOIUrl":null,"url":null,"abstract":"<p>As quantum processors grow in complexity, new challenges arise such as the management of device variability and the interface with supporting electronics. Spin qubits in silicon quantum dots can potentially address these challenges given their control fidelities and potential for compatibility with large-scale integration. Here we report the integration of 1,024 independent silicon quantum dot devices with on-chip digital and analogue electronics, all operating below 1 K. A high-frequency analogue multiplexer provides fast access to all devices with minimal electrical connections, allowing characteristic data across the quantum dot array to be acquired and analysed in under 10 min. This is achieved by leveraging radio-frequency reflectometry with state-of-the-art signal integrity, characterized by a typical signal-to-noise voltage ratio in excess of 75 for an integration time of 3.18 μs. We extract key quantum dot parameters by automated machine learning routines to assess quantum dot yield and understand the impact of device design. We find correlations between quantum dot parameters and room-temperature transistor behaviour that could be used as a proxy for in-line process monitoring.</p>","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"17 1","pages":""},"PeriodicalIF":33.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41928-024-01304-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
As quantum processors grow in complexity, new challenges arise such as the management of device variability and the interface with supporting electronics. Spin qubits in silicon quantum dots can potentially address these challenges given their control fidelities and potential for compatibility with large-scale integration. Here we report the integration of 1,024 independent silicon quantum dot devices with on-chip digital and analogue electronics, all operating below 1 K. A high-frequency analogue multiplexer provides fast access to all devices with minimal electrical connections, allowing characteristic data across the quantum dot array to be acquired and analysed in under 10 min. This is achieved by leveraging radio-frequency reflectometry with state-of-the-art signal integrity, characterized by a typical signal-to-noise voltage ratio in excess of 75 for an integration time of 3.18 μs. We extract key quantum dot parameters by automated machine learning routines to assess quantum dot yield and understand the impact of device design. We find correlations between quantum dot parameters and room-temperature transistor behaviour that could be used as a proxy for in-line process monitoring.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.