Reversal of the impact chain for actionable climate information

IF 15.7 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Peter Pfleiderer, Thomas L. Frölicher, Chahan M. Kropf, Robin D. Lamboll, Quentin Lejeune, Tiago Capela Lourenço, Fabien Maussion, Jamie W. McCaughey, Yann Quilcaille, Joeri Rogelj, Benjamin Sanderson, Lilian Schuster, Jana Sillmann, Chris Smith, Emily Theokritoff, Carl-Friedrich Schleussner
{"title":"Reversal of the impact chain for actionable climate information","authors":"Peter Pfleiderer, Thomas L. Frölicher, Chahan M. Kropf, Robin D. Lamboll, Quentin Lejeune, Tiago Capela Lourenço, Fabien Maussion, Jamie W. McCaughey, Yann Quilcaille, Joeri Rogelj, Benjamin Sanderson, Lilian Schuster, Jana Sillmann, Chris Smith, Emily Theokritoff, Carl-Friedrich Schleussner","doi":"10.1038/s41561-024-01597-w","DOIUrl":null,"url":null,"abstract":"<p>Escalating impacts of climate change underscore the risks posed by crossing potentially irreversible Earth and socioecological system thresholds and adaptation limits. However, limitations in the provision of actionable climate information may hinder an anticipatory response. Here we suggest a reversal of the traditional impact chain methodology as an end-user focused approach linking specific climate risk thresholds, including at the local level, to emissions pathways. We outline the socioeconomic and value judgement dimensions that can inform the identification of such risk thresholds. The applicability of the approach is highlighted by three examples that estimate the required CO<sub>2</sub> emissions constraints to avoid critical levels of health-related heat risks in Berlin, fire weather in Portugal and glacier mass loss in High Mountain Asia. We argue that linking risk threshold exceedance directly to global emissions benchmarks can aid the understanding of the benefits of stringent emissions reductions for societies and local decision-makers.</p>","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"1 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41561-024-01597-w","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Escalating impacts of climate change underscore the risks posed by crossing potentially irreversible Earth and socioecological system thresholds and adaptation limits. However, limitations in the provision of actionable climate information may hinder an anticipatory response. Here we suggest a reversal of the traditional impact chain methodology as an end-user focused approach linking specific climate risk thresholds, including at the local level, to emissions pathways. We outline the socioeconomic and value judgement dimensions that can inform the identification of such risk thresholds. The applicability of the approach is highlighted by three examples that estimate the required CO2 emissions constraints to avoid critical levels of health-related heat risks in Berlin, fire weather in Portugal and glacier mass loss in High Mountain Asia. We argue that linking risk threshold exceedance directly to global emissions benchmarks can aid the understanding of the benefits of stringent emissions reductions for societies and local decision-makers.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Geoscience
Nature Geoscience 地学-地球科学综合
CiteScore
26.70
自引率
1.60%
发文量
187
审稿时长
3.3 months
期刊介绍: Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields. The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies. Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology. Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信