Birch-Bark-Inspired Synergistic Fabrication of High-Performance Cellulosic Materials.

ACS Sustainable Resource Management Pub Date : 2024-11-13 eCollection Date: 2024-12-26 DOI:10.1021/acssusresmgt.4c00266
Abdolrahim A Rafi, Luca Deiana, Rana Alimohammadzadeh, Per Engstrand, Thomas Granfeldt, Staffan K Nyström, Armando Cordova
{"title":"Birch-Bark-Inspired Synergistic Fabrication of High-Performance Cellulosic Materials.","authors":"Abdolrahim A Rafi, Luca Deiana, Rana Alimohammadzadeh, Per Engstrand, Thomas Granfeldt, Staffan K Nyström, Armando Cordova","doi":"10.1021/acssusresmgt.4c00266","DOIUrl":null,"url":null,"abstract":"<p><p>There is a growing demand for the utilization of sustainable materials, such as cellulose-based alternatives, over fossil-based materials. However, the inherent drawbacks of cellulosic materials, such as extremely low wet strength and resistance to moisture, need significant improvements. Moreover, several of the commercially available wet-strength chemicals and hydrophobic agents for cellulosic material treatment are toxic or fossil-based (e.g., epichlorohydrin and fluorocarbons). Herein, we present an eco-friendly, high-yield, industrially relevant, and scalable method inspired by birch bark for fabricating hydrophobic and strong cellulosic materials. This was accomplished by combining simple surface modification of cellulosic fibers in water using colloidal particles of betulin, an abundant triterpene extracted from birch bark, with sustainable chemical engineering (e.g., lignin modification and hot-pressing). This led to a transformative process that not only altered the morphology of the cellulosic materials into a more dense and compact structure but also made them hydrophobic (contact angles of up to >130°) with the betulin particles undergoing polymorphic transformations from prismatic crystals (betulin III) to orthorhombic whiskers (betulin I). Significant synergistic effects are observed, resulting in a remarkable increase in wet strength (>1400%) of the produced hydrophobic cellulosic materials.</p>","PeriodicalId":100015,"journal":{"name":"ACS Sustainable Resource Management","volume":"1 12","pages":"2554-2563"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684174/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Resource Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acssusresmgt.4c00266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/26 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There is a growing demand for the utilization of sustainable materials, such as cellulose-based alternatives, over fossil-based materials. However, the inherent drawbacks of cellulosic materials, such as extremely low wet strength and resistance to moisture, need significant improvements. Moreover, several of the commercially available wet-strength chemicals and hydrophobic agents for cellulosic material treatment are toxic or fossil-based (e.g., epichlorohydrin and fluorocarbons). Herein, we present an eco-friendly, high-yield, industrially relevant, and scalable method inspired by birch bark for fabricating hydrophobic and strong cellulosic materials. This was accomplished by combining simple surface modification of cellulosic fibers in water using colloidal particles of betulin, an abundant triterpene extracted from birch bark, with sustainable chemical engineering (e.g., lignin modification and hot-pressing). This led to a transformative process that not only altered the morphology of the cellulosic materials into a more dense and compact structure but also made them hydrophobic (contact angles of up to >130°) with the betulin particles undergoing polymorphic transformations from prismatic crystals (betulin III) to orthorhombic whiskers (betulin I). Significant synergistic effects are observed, resulting in a remarkable increase in wet strength (>1400%) of the produced hydrophobic cellulosic materials.

桦木条启发的高性能纤维素材料协同制造。
使用可持续材料的需求越来越大,例如纤维素基替代品,而不是化石基材料。然而,纤维素材料的固有缺点,如极低的湿强度和抗湿性,需要显著改进。此外,一些用于纤维素材料处理的市售湿强化学品和疏水剂是有毒的或化石基的(例如,环氧氯丙烷和氟碳化合物)。在此,我们提出了一种环保,高产,工业相关,可扩展的方法,灵感来自桦树皮,用于制造疏水和强纤维素材料。这是通过使用从桦树皮中提取的丰富的三萜白桦素胶体颗粒在水中对纤维素纤维进行简单的表面改性,并结合可持续的化学工程(例如木质素改性和热压)来实现的。这导致了一个转变过程,不仅改变了纤维素材料的形态,使其结构更致密、更紧凑,而且使其疏水(接触角高达>130°),桦木素颗粒经历了从棱柱状晶体(桦木素III)到正交晶须(桦木素I)的多晶化转变。使所制疏水纤维素材料的湿强度显著提高(>1400%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信