Sodium dodecyl sulfate-coated silver nanoparticles accelerate antimicrobial potentials by targeting amphiphilic membranes.

IF 4.5 Q1 MICROBIOLOGY
mLife Pub Date : 2024-12-03 eCollection Date: 2024-12-01 DOI:10.1002/mlf2.12143
Xiuyan Jin, Na Peng, Aoran Cui, Yue Liu, Xianqi Peng, Linlin Huang, Abdelaziz Ed-Dra, Fang He, Yan Li, Shikuan Yang, Min Yue
{"title":"Sodium dodecyl sulfate-coated silver nanoparticles accelerate antimicrobial potentials by targeting amphiphilic membranes.","authors":"Xiuyan Jin, Na Peng, Aoran Cui, Yue Liu, Xianqi Peng, Linlin Huang, Abdelaziz Ed-Dra, Fang He, Yan Li, Shikuan Yang, Min Yue","doi":"10.1002/mlf2.12143","DOIUrl":null,"url":null,"abstract":"<p><p>Compelling concerns about antimicrobial resistance and the emergence of multidrug-resistant pathogens call for novel strategies to address these challenges. Nanoparticles show promising antimicrobial activities; however, their actions are hindered primarily by the bacterial hydrophilic-hydrophobic barrier. To overcome this, we developed a method of electrochemically anchoring sodium dodecyl sulfate (SDS) coatings onto silver nanoparticles (AgNPs), resulting in improved antimicrobial potency. We then investigated the antimicrobial mechanisms and developed therapeutic applications. We demonstrated SDS-coated AgNPs with anomalous dispersive properties capable of dispersing in both polar and nonpolar solvents and, further, detected significantly higher bacteriostatic and bactericidal effects compared to silver ions (Ag<sup>+</sup>). Cellular assays suggested multipotent disruptions targeting the bacterial membrane, evidenced by increasing lactate dehydrogenase, protein and sugar leakage, and consistent with results from the transcriptomic analysis. Notably, the amphiphilic characteristics of the AgNPs maintained robust antibacterial activities for a year at various temperatures, indicating long-term efficacy as a potential disinfectant. In a murine model, the AgNPs showed considerable biocompatibility and could alleviate fatal <i>Salmonella</i> infections. Collectively, by gaining amphiphilic properties from SDS, we offer novel AgNPs against bacterial infections combined with long-term and cost-effective strategies.</p>","PeriodicalId":94145,"journal":{"name":"mLife","volume":"3 4","pages":"551-564"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686091/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mlf2.12143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Compelling concerns about antimicrobial resistance and the emergence of multidrug-resistant pathogens call for novel strategies to address these challenges. Nanoparticles show promising antimicrobial activities; however, their actions are hindered primarily by the bacterial hydrophilic-hydrophobic barrier. To overcome this, we developed a method of electrochemically anchoring sodium dodecyl sulfate (SDS) coatings onto silver nanoparticles (AgNPs), resulting in improved antimicrobial potency. We then investigated the antimicrobial mechanisms and developed therapeutic applications. We demonstrated SDS-coated AgNPs with anomalous dispersive properties capable of dispersing in both polar and nonpolar solvents and, further, detected significantly higher bacteriostatic and bactericidal effects compared to silver ions (Ag+). Cellular assays suggested multipotent disruptions targeting the bacterial membrane, evidenced by increasing lactate dehydrogenase, protein and sugar leakage, and consistent with results from the transcriptomic analysis. Notably, the amphiphilic characteristics of the AgNPs maintained robust antibacterial activities for a year at various temperatures, indicating long-term efficacy as a potential disinfectant. In a murine model, the AgNPs showed considerable biocompatibility and could alleviate fatal Salmonella infections. Collectively, by gaining amphiphilic properties from SDS, we offer novel AgNPs against bacterial infections combined with long-term and cost-effective strategies.

十二烷基硫酸钠包覆银纳米粒子通过靶向两亲性膜加速抗菌潜力。
对抗菌素耐药性和多药耐药病原体出现的迫切关切要求采取新的战略来应对这些挑战。纳米颗粒具有良好的抗菌活性;然而,它们的作用主要受到细菌亲疏水屏障的阻碍。为了克服这个问题,我们开发了一种电化学锚定十二烷基硫酸钠(SDS)涂层到银纳米颗粒(AgNPs)上的方法,从而提高了抗菌效力。然后我们研究了抗菌机制并开发了治疗应用。我们证明了sds涂层AgNPs具有异常的分散特性,能够在极性和非极性溶剂中分散,并且与银离子(Ag+)相比,检测到显着更高的抑菌和杀菌效果。细胞分析表明,针对细菌膜的多能性破坏,可以通过乳酸脱氢酶、蛋白质和糖泄漏增加来证明,这与转录组学分析的结果一致。值得注意的是,AgNPs的两亲性特征在不同温度下保持了一年的强劲抗菌活性,表明其作为潜在消毒剂的长期功效。在小鼠模型中,AgNPs表现出相当大的生物相容性,可以减轻致命的沙门氏菌感染。总的来说,通过从SDS中获得两亲性,我们提供了抗细菌感染的新型AgNPs,并结合了长期和具有成本效益的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信