A multifunctional metal-based nanozyme for CT/PTI-guided photothermal/starvation/chemodynamic therapy against colon tumor.

Wei Mei, Shijie Yao, Xing Cai, Qi Xu, Han Hu, Zushun Xu, Xiaofang Dai
{"title":"A multifunctional metal-based nanozyme for CT/PTI-guided photothermal/starvation/chemodynamic therapy against colon tumor.","authors":"Wei Mei, Shijie Yao, Xing Cai, Qi Xu, Han Hu, Zushun Xu, Xiaofang Dai","doi":"10.1039/d4tb02578d","DOIUrl":null,"url":null,"abstract":"<p><p>Colon cancer is a major global health threat. Early detection and treatment are crucial for improving survival rates. Conventional methods, like colonoscopies and CT scans, have limitations, emphasizing the need for innovative strategies. This study introduces an IP6-coated nanozyme, CeO<sub>2</sub>@Au@IP6 (CeAIP), for diagnosing and treating colon cancer. IP6 inhibits cancer cell growth and improves the stability and dispersibility of the nanozyme. The peroxidase activity of cerium dioxide (CeO<sub>2</sub>) alleviates tumor hypoxia and generates toxic hydroxyl radicals. Gold nanoparticles (Au NPs) utilize the surface plasmon resonance (SPR) effect for photothermal therapy (PTT) and exhibit peroxidase- and glucose oxidase-like activities. This combination enhances the therapeutic effects of PTT, starvation therapy (ST), and chemodynamic therapy (CDT), while also enabling dual-modality CT/PT imaging. CeAIP NPs effectively treat colon cancer with PTT, ST, and CDT under 808 nm near-infrared laser irradiation. This integrated nanozyme-based approach offers hope for early detection and treatment of colon cancer, potentially improving cure rates.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4tb02578d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Colon cancer is a major global health threat. Early detection and treatment are crucial for improving survival rates. Conventional methods, like colonoscopies and CT scans, have limitations, emphasizing the need for innovative strategies. This study introduces an IP6-coated nanozyme, CeO2@Au@IP6 (CeAIP), for diagnosing and treating colon cancer. IP6 inhibits cancer cell growth and improves the stability and dispersibility of the nanozyme. The peroxidase activity of cerium dioxide (CeO2) alleviates tumor hypoxia and generates toxic hydroxyl radicals. Gold nanoparticles (Au NPs) utilize the surface plasmon resonance (SPR) effect for photothermal therapy (PTT) and exhibit peroxidase- and glucose oxidase-like activities. This combination enhances the therapeutic effects of PTT, starvation therapy (ST), and chemodynamic therapy (CDT), while also enabling dual-modality CT/PT imaging. CeAIP NPs effectively treat colon cancer with PTT, ST, and CDT under 808 nm near-infrared laser irradiation. This integrated nanozyme-based approach offers hope for early detection and treatment of colon cancer, potentially improving cure rates.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信