Unraveling the diversity dynamics and network stability of alkaline phosphomonoesterase-producing bacteria in modulating maize yield.

IF 23.7 Q1 MICROBIOLOGY
iMeta Pub Date : 2024-12-20 eCollection Date: 2024-12-01 DOI:10.1002/imt2.260
Lijun Chen, Guofan Zhu, Alberto Pascual-Garcia, Francisco Dini-Andreote, Jie Zheng, Xiaoyue Wang, Shungui Zhou, Yuji Jiang
{"title":"Unraveling the diversity dynamics and network stability of alkaline phosphomonoesterase-producing bacteria in modulating maize yield.","authors":"Lijun Chen, Guofan Zhu, Alberto Pascual-Garcia, Francisco Dini-Andreote, Jie Zheng, Xiaoyue Wang, Shungui Zhou, Yuji Jiang","doi":"10.1002/imt2.260","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphorus, as a nonrenewable resource, plays a crucial role in crop development and productivity. However, the extent to which straw amendments contribute to the dynamics of soil alkaline phosphomonoesterase (ALP)-producing bacterial community and functionality over an extended period remains elusive. Here, we conducted a 7-year long-term field experiment consisting of a no-fertilizer control, a chemical fertilizer treatment, and three straw (straw, straw combined with manure, and straw biochar) treatments. Our results indicated that straw amendments significantly improved the succession patterns of the ALP-producing bacterial diversity. Simultaneously, straw amendments significantly increased the network stability of the ALP-producing bacteria over time, as evidenced by higher network robustness, a higher ratio of negative to positive cohesion, and lower network vulnerability. High dynamic and stability of ALP-producing bacterial community generated high ALP activity which further increased soil Phosphorus (P) availability as well as maize productivity.</p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"3 6","pages":"e260"},"PeriodicalIF":23.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683463/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iMeta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/imt2.260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphorus, as a nonrenewable resource, plays a crucial role in crop development and productivity. However, the extent to which straw amendments contribute to the dynamics of soil alkaline phosphomonoesterase (ALP)-producing bacterial community and functionality over an extended period remains elusive. Here, we conducted a 7-year long-term field experiment consisting of a no-fertilizer control, a chemical fertilizer treatment, and three straw (straw, straw combined with manure, and straw biochar) treatments. Our results indicated that straw amendments significantly improved the succession patterns of the ALP-producing bacterial diversity. Simultaneously, straw amendments significantly increased the network stability of the ALP-producing bacteria over time, as evidenced by higher network robustness, a higher ratio of negative to positive cohesion, and lower network vulnerability. High dynamic and stability of ALP-producing bacterial community generated high ALP activity which further increased soil Phosphorus (P) availability as well as maize productivity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信