Bioprospecting of culturable marine biofilm bacteria for novel antimicrobial peptides.

IF 23.7 Q1 MICROBIOLOGY
iMeta Pub Date : 2024-10-17 eCollection Date: 2024-12-01 DOI:10.1002/imt2.244
Shen Fan, Peng Qin, Jie Lu, Shuaitao Wang, Jie Zhang, Yan Wang, Aifang Cheng, Yan Cao, Wei Ding, Weipeng Zhang
{"title":"Bioprospecting of culturable marine biofilm bacteria for novel antimicrobial peptides.","authors":"Shen Fan, Peng Qin, Jie Lu, Shuaitao Wang, Jie Zhang, Yan Wang, Aifang Cheng, Yan Cao, Wei Ding, Weipeng Zhang","doi":"10.1002/imt2.244","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial peptides (AMPs) have become a viable source of novel antibiotics that are effective against human pathogenic bacteria. In this study, we construct a bank of culturable marine biofilm bacteria constituting 713 strains and their nearly complete genomes and predict AMPs using ribosome profiling and deep learning. Compared with previous approaches, ribosome profiling has improved the identification and validation of small open reading frames (sORFs) for AMP prediction. Among the 80,430 expressed sORFs, 341 are identified as candidate AMPs with high probability. Most potential AMPs have less than 40% similarity in their amino acid sequence compared to those listed in public databases. Furthermore, these AMPs are associated with bacterial groups that are not previously known to produce AMPs. Therefore, our deep learning model has acquired characteristics of unfamiliar AMPs. Chemical synthesis of 60 potential AMP sequences yields 54 compounds with antimicrobial activity, including potent inhibitory effects on various drug-resistant human pathogens. This study extends the range of AMP compounds by investigating marine biofilm microbiomes using a novel approach, accelerating AMP discovery.</p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"3 6","pages":"e244"},"PeriodicalIF":23.7000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683478/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iMeta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/imt2.244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Antimicrobial peptides (AMPs) have become a viable source of novel antibiotics that are effective against human pathogenic bacteria. In this study, we construct a bank of culturable marine biofilm bacteria constituting 713 strains and their nearly complete genomes and predict AMPs using ribosome profiling and deep learning. Compared with previous approaches, ribosome profiling has improved the identification and validation of small open reading frames (sORFs) for AMP prediction. Among the 80,430 expressed sORFs, 341 are identified as candidate AMPs with high probability. Most potential AMPs have less than 40% similarity in their amino acid sequence compared to those listed in public databases. Furthermore, these AMPs are associated with bacterial groups that are not previously known to produce AMPs. Therefore, our deep learning model has acquired characteristics of unfamiliar AMPs. Chemical synthesis of 60 potential AMP sequences yields 54 compounds with antimicrobial activity, including potent inhibitory effects on various drug-resistant human pathogens. This study extends the range of AMP compounds by investigating marine biofilm microbiomes using a novel approach, accelerating AMP discovery.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信