Physiologically Based Pharmacokinetic Modeling and Simulation to Support a Change in the FDA-Labeled Dosing Frequency of RHB-105 Low-Dose Rifabutin Triple Therapy for Helicobacter pylori Eradication.
Nimish Vakil, Colin W Howden, Shailja C Shah, Kuan-Fu Chen, Elliot Offman, June S Almenoff, Kely L Sheldon
{"title":"Physiologically Based Pharmacokinetic Modeling and Simulation to Support a Change in the FDA-Labeled Dosing Frequency of RHB-105 Low-Dose Rifabutin Triple Therapy for Helicobacter pylori Eradication.","authors":"Nimish Vakil, Colin W Howden, Shailja C Shah, Kuan-Fu Chen, Elliot Offman, June S Almenoff, Kely L Sheldon","doi":"10.1002/jcph.6178","DOIUrl":null,"url":null,"abstract":"<p><p>Patient adherence is vital for Helicobacter pylori eradication. Simplifying therapy dosing schedules may promote patient adherence, enhance treatment success rates, and help mitigate the development of antibiotic resistance. We aimed to assess plasma and intragastric rifabutin, amoxicillin, and omeprazole concentrations comparing two dosing schedules of RHB-105 (every 8 h and a more flexible three-times daily schedule, at 8 a.m., 12 p.m., and 6 p.m.) using a validated physiologically based pharmacokinetic (PBPK) model. Leveraging in vitro and in vivo information on the pharmacokinetics of the three components of RHB-105, we developed mechanistic absorption PBPK models to predict plasma and intragastric concentration-time profiles for each component. There were only negligible differences in the area under the concentration-time curves (AUC) for plasma and the intragastric compartment, and maximal concentration (C<sub>max</sub>) with only up to a 1.1-fold difference for rifabutin, amoxicillin, and omeprazole between dosing schedules. Overlapping 90% confidence intervals for both AUC and C<sub>max</sub> support that overall exposures are comparable regardless of dosing every 8 h or three-times daily for all three drugs. Drug exposure was highly similar for rifabutin, amoxicillin, and omeprazole with each dosing schedule. Novel mechanistic absorption PBPK modeling supports the approval and use of the more flexible dosing schedule for RHB-105, simplifying patient experience and potentially increasing adherence.</p>","PeriodicalId":48908,"journal":{"name":"Journal of Clinical Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jcph.6178","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Patient adherence is vital for Helicobacter pylori eradication. Simplifying therapy dosing schedules may promote patient adherence, enhance treatment success rates, and help mitigate the development of antibiotic resistance. We aimed to assess plasma and intragastric rifabutin, amoxicillin, and omeprazole concentrations comparing two dosing schedules of RHB-105 (every 8 h and a more flexible three-times daily schedule, at 8 a.m., 12 p.m., and 6 p.m.) using a validated physiologically based pharmacokinetic (PBPK) model. Leveraging in vitro and in vivo information on the pharmacokinetics of the three components of RHB-105, we developed mechanistic absorption PBPK models to predict plasma and intragastric concentration-time profiles for each component. There were only negligible differences in the area under the concentration-time curves (AUC) for plasma and the intragastric compartment, and maximal concentration (Cmax) with only up to a 1.1-fold difference for rifabutin, amoxicillin, and omeprazole between dosing schedules. Overlapping 90% confidence intervals for both AUC and Cmax support that overall exposures are comparable regardless of dosing every 8 h or three-times daily for all three drugs. Drug exposure was highly similar for rifabutin, amoxicillin, and omeprazole with each dosing schedule. Novel mechanistic absorption PBPK modeling supports the approval and use of the more flexible dosing schedule for RHB-105, simplifying patient experience and potentially increasing adherence.
期刊介绍:
The Journal of Clinical Pharmacology (JCP) is a Human Pharmacology journal designed to provide physicians, pharmacists, research scientists, regulatory scientists, drug developers and academic colleagues a forum to present research in all aspects of Clinical Pharmacology. This includes original research in pharmacokinetics, pharmacogenetics/pharmacogenomics, pharmacometrics, physiologic based pharmacokinetic modeling, drug interactions, therapeutic drug monitoring, regulatory sciences (including unique methods of data analysis), special population studies, drug development, pharmacovigilance, womens’ health, pediatric pharmacology, and pharmacodynamics. Additionally, JCP publishes review articles, commentaries and educational manuscripts. The Journal also serves as an instrument to disseminate Public Policy statements from the American College of Clinical Pharmacology.