Identification and Molecular Marker Detection of Leaf Rust Resistance Genes in Wheat Lines from China: Development of an Efficient Software for Gene Postulation.

IF 2.6 2区 农林科学 Q2 PLANT SCIENCES
Pu Gao, Peng-Peng Liu, Rui Dong, Takele Weldu Gebrewahid, Xin-Hai Wang, Xue-Qing Wang, Jia-Yao Zhang, Pei-Pei Zhang, Wei Sang, Zai-Feng Li
{"title":"Identification and Molecular Marker Detection of Leaf Rust Resistance Genes in Wheat Lines from China: Development of an Efficient Software for Gene Postulation.","authors":"Pu Gao, Peng-Peng Liu, Rui Dong, Takele Weldu Gebrewahid, Xin-Hai Wang, Xue-Qing Wang, Jia-Yao Zhang, Pei-Pei Zhang, Wei Sang, Zai-Feng Li","doi":"10.1094/PHYTO-08-24-0249-R","DOIUrl":null,"url":null,"abstract":"<p><p>Wheat leaf rust, caused by <i>Puccinia triticina</i> Erikss. (<i>Pt</i>), is one of the most devastating diseases in common wheat (<i>Triticum aestivum</i> L.) globally. Using resistant lines is the most cost-effective and safe disease control method. Eighty-three wheat lines from China and 36 differential lines, mainly near-isogenic lines (NILs) with known leaf rust resistance (<i>Lr</i>) genes in the Thatcher background, were inoculated with 17 <i>Pt</i> races at the seedling stage to postulate <i>Lr</i> gene(s) in the greenhouse. Field tests conducted during the 2020-2021 and 2021-2022 cropping seasons assessed adult-plant resistance to leaf rust. Moreover, we developed a graphical user interface (GUI) bioinformatics toolkit platform called WEKits v1.0, which integrates a gene postulation submodule based on the gene-for-gene hypothesis, providing accurate and efficient analysis. Through gene postulation, molecular marker detection, and pedigree analysis, we identified the presence of nine <i>Lr</i> genes <i>Lr1, Lr10, Lr14a, Lr21, Lr26, Lr34, Lr37, Lr44,</i> and <i>Lr13</i>/<i>LrZH22</i>, either individually or in combination in 30 wheat lines. Furthermore, 19 lines exhibited slow rusting resistance in both growing seasons. The development of the WEKits software significantly enhanced the efficiency and accuracy of the gene postulation process, providing a valuable tool for rapid identification of known resistance genes in the wheat lines. This could create a vital input to wheat rust resistance breeding. The results identified in this study and the WEKits platform are valuable for selecting lines with effective <i>Lr</i> genes and breeding rust-resistant wheat.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-08-24-0249-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Wheat leaf rust, caused by Puccinia triticina Erikss. (Pt), is one of the most devastating diseases in common wheat (Triticum aestivum L.) globally. Using resistant lines is the most cost-effective and safe disease control method. Eighty-three wheat lines from China and 36 differential lines, mainly near-isogenic lines (NILs) with known leaf rust resistance (Lr) genes in the Thatcher background, were inoculated with 17 Pt races at the seedling stage to postulate Lr gene(s) in the greenhouse. Field tests conducted during the 2020-2021 and 2021-2022 cropping seasons assessed adult-plant resistance to leaf rust. Moreover, we developed a graphical user interface (GUI) bioinformatics toolkit platform called WEKits v1.0, which integrates a gene postulation submodule based on the gene-for-gene hypothesis, providing accurate and efficient analysis. Through gene postulation, molecular marker detection, and pedigree analysis, we identified the presence of nine Lr genes Lr1, Lr10, Lr14a, Lr21, Lr26, Lr34, Lr37, Lr44, and Lr13/LrZH22, either individually or in combination in 30 wheat lines. Furthermore, 19 lines exhibited slow rusting resistance in both growing seasons. The development of the WEKits software significantly enhanced the efficiency and accuracy of the gene postulation process, providing a valuable tool for rapid identification of known resistance genes in the wheat lines. This could create a vital input to wheat rust resistance breeding. The results identified in this study and the WEKits platform are valuable for selecting lines with effective Lr genes and breeding rust-resistant wheat.

中国小麦抗叶锈病基因的鉴定与分子标记检测——高效基因推定软件的开发。
小麦叶锈病,由小麦锈病引起。小麦黑穗病(Pt)是全球常见小麦(Triticum aestivum L.)最具破坏性的病害之一。使用抗病品系是最具成本效益和最安全的疾病控制方法。以撒切尔背景下已知抗叶锈病基因的83个中国小麦品系和36个差异品系(主要是近等基因品系)为材料,在苗期接种17个Pt小种,在温室中推测抗叶锈病基因。在2020-2021和2021-2022种植季进行的田间试验评估了成虫对叶锈病的抗性。此外,我们开发了一个图形用户界面(GUI)生物信息学工具包平台WEKits v1.0,该平台集成了基于基因对基因假设的基因假设子模块,提供了准确高效的分析。通过基因假设、分子标记检测和家系分析,在30个小麦品系中鉴定出9个Lr基因Lr1、Lr10、Lr14a、Lr21、Lr26、Lr34、Lr37、Lr44和Lr13/LrZH22,这些基因可以单独或组合存在。此外,19个品系在两个生长季节均表现出缓慢的抗锈性。WEKits软件的开发大大提高了基因推定过程的效率和准确性,为快速鉴定小麦品系中已知的抗性基因提供了有价值的工具。这可能为小麦抗锈病育种创造一个重要的投入。本研究结果和wekit平台对选育具有有效Lr基因的小麦品系和选育抗锈病小麦具有重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Phytopathology
Phytopathology 生物-植物科学
CiteScore
5.90
自引率
9.40%
发文量
505
审稿时长
4-8 weeks
期刊介绍: Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信