Identification and Molecular Marker Detection of Leaf Rust Resistance Genes in Wheat Lines from China: Development of an Efficient Software for Gene Postulation.
{"title":"Identification and Molecular Marker Detection of Leaf Rust Resistance Genes in Wheat Lines from China: Development of an Efficient Software for Gene Postulation.","authors":"Pu Gao, Peng-Peng Liu, Rui Dong, Takele Weldu Gebrewahid, Xin-Hai Wang, Xue-Qing Wang, Jia-Yao Zhang, Pei-Pei Zhang, Wei Sang, Zai-Feng Li","doi":"10.1094/PHYTO-08-24-0249-R","DOIUrl":null,"url":null,"abstract":"<p><p>Wheat leaf rust, caused by <i>Puccinia triticina</i> Erikss. (<i>Pt</i>), is one of the most devastating diseases in common wheat (<i>Triticum aestivum</i> L.) globally. Using resistant lines is the most cost-effective and safe disease control method. Eighty-three wheat lines from China and 36 differential lines, mainly near-isogenic lines (NILs) with known leaf rust resistance (<i>Lr</i>) genes in the Thatcher background, were inoculated with 17 <i>Pt</i> races at the seedling stage to postulate <i>Lr</i> gene(s) in the greenhouse. Field tests conducted during the 2020-2021 and 2021-2022 cropping seasons assessed adult-plant resistance to leaf rust. Moreover, we developed a graphical user interface (GUI) bioinformatics toolkit platform called WEKits v1.0, which integrates a gene postulation submodule based on the gene-for-gene hypothesis, providing accurate and efficient analysis. Through gene postulation, molecular marker detection, and pedigree analysis, we identified the presence of nine <i>Lr</i> genes <i>Lr1, Lr10, Lr14a, Lr21, Lr26, Lr34, Lr37, Lr44,</i> and <i>Lr13</i>/<i>LrZH22</i>, either individually or in combination in 30 wheat lines. Furthermore, 19 lines exhibited slow rusting resistance in both growing seasons. The development of the WEKits software significantly enhanced the efficiency and accuracy of the gene postulation process, providing a valuable tool for rapid identification of known resistance genes in the wheat lines. This could create a vital input to wheat rust resistance breeding. The results identified in this study and the WEKits platform are valuable for selecting lines with effective <i>Lr</i> genes and breeding rust-resistant wheat.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-08-24-0249-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Wheat leaf rust, caused by Puccinia triticina Erikss. (Pt), is one of the most devastating diseases in common wheat (Triticum aestivum L.) globally. Using resistant lines is the most cost-effective and safe disease control method. Eighty-three wheat lines from China and 36 differential lines, mainly near-isogenic lines (NILs) with known leaf rust resistance (Lr) genes in the Thatcher background, were inoculated with 17 Pt races at the seedling stage to postulate Lr gene(s) in the greenhouse. Field tests conducted during the 2020-2021 and 2021-2022 cropping seasons assessed adult-plant resistance to leaf rust. Moreover, we developed a graphical user interface (GUI) bioinformatics toolkit platform called WEKits v1.0, which integrates a gene postulation submodule based on the gene-for-gene hypothesis, providing accurate and efficient analysis. Through gene postulation, molecular marker detection, and pedigree analysis, we identified the presence of nine Lr genes Lr1, Lr10, Lr14a, Lr21, Lr26, Lr34, Lr37, Lr44, and Lr13/LrZH22, either individually or in combination in 30 wheat lines. Furthermore, 19 lines exhibited slow rusting resistance in both growing seasons. The development of the WEKits software significantly enhanced the efficiency and accuracy of the gene postulation process, providing a valuable tool for rapid identification of known resistance genes in the wheat lines. This could create a vital input to wheat rust resistance breeding. The results identified in this study and the WEKits platform are valuable for selecting lines with effective Lr genes and breeding rust-resistant wheat.
期刊介绍:
Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.