Mechanism of Fangji Huangqi decoction against acute kidney injury based on network pharmacology and experimental validation.

IF 6.7 1区 医学 Q1 CHEMISTRY, MEDICINAL
Chengcheng Xiao, Yayun Wang, Jingwei Liu, Xin Li, Peng Wang, Junran Zhou, Hao Xiu, Shun Lu, Hai Zhu, Renhe Wang
{"title":"Mechanism of Fangji Huangqi decoction against acute kidney injury based on network pharmacology and experimental validation.","authors":"Chengcheng Xiao, Yayun Wang, Jingwei Liu, Xin Li, Peng Wang, Junran Zhou, Hao Xiu, Shun Lu, Hai Zhu, Renhe Wang","doi":"10.1016/j.phymed.2024.156345","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Fangji Huangqi Decoction (FJHQD), a famous Traditional Chinese Medicine (TCM) formula, has been widely applied in improving renal function. However, the interaction of bioactives from FJHQD with the targets involved in acute renal injury (AKI) has not been elucidated yet.</p><p><strong>Purpose: </strong>A network pharmacology-based approach combined with molecular docking and in vitro and in vivo validation was performed to determine the bioactives, key targets, and potential pharmacological mechanism of FJHQD against AKI.</p><p><strong>Materials and methods: </strong>The model of mouse renal ischemic reperfusion was adopted to verify the curative effect of FJHQD against renal injury. FJHQD was analyzed and separated by Ultra-High performance liquid chromatography (UHPLC). Bioactives and potential targets of FJHQD, as well as AKI-related targets, were retrieved from public databases. Crucial bioactive ingredients, potential targets, and signaling pathways were acquired through bioinformatics analysis, including protein-protein interaction (PPI), as well as the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Subsequently, molecular docking was carried out to predict the combination of active compounds with core targets. Besides, in vivo and vitro experiments were conducted to verify the findings.</p><p><strong>Results: </strong>A total of 20 bioactive ingredients of FJHQD (top 10 positive ion and negative ion compounds) and 274 FJHQD-AKI overlaped targets were screened. Bioinformatics analysis revealed that apoptosis mediated by PI3K-AKT signaling pathway might play an important role in FJHQD against AKI. Further experiments showed that FJHQD alleviated I/R-induced renal injury and OGD/R induced TEC apoptosis by activating PI3K-AKT signaling pathway. Moreover, molecular docking suggested (9Z,12Z,14E)-16-Hydroxy-9,12,14-octadecatrienoic acid, 2-Hydroxyacetophenone, Liquiritigenin, (S)-[10]-Gingerol and Isookanin-7-O-glucoside may be potential candidate agents, among which, PIK3CA interacted with Liquiritigenin, (S)-[10]-Gingerol, Isookanin-7-O-glucoside and 2-Hydroxyacetophenone respectively. AKT1 interacted with (9Z,12Z,14E)-16-Hydroxy-9,12,14-octadecatrienoic acid and 2-Hydroxyacetophenone. Cell experiments showed that the most important ingredient of FJHQD, Liquiritigenin, could inhibit the TEC apoptosis and up-regulate PI3K-Akt signaling pathway, which further confirmed the prediction by network pharmacology strategy and molecular docking.</p><p><strong>Conclusion: </strong>Our results comprehensively illustrated the bioactives, potential targets, and molecular mechanism of FJHQD against AKI. It also provided a promising strategy to uncover the scientific basis and therapeutic mechanism of TCM formulae in treating diseases.</p>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"136 ","pages":"156345"},"PeriodicalIF":6.7000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.phymed.2024.156345","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Fangji Huangqi Decoction (FJHQD), a famous Traditional Chinese Medicine (TCM) formula, has been widely applied in improving renal function. However, the interaction of bioactives from FJHQD with the targets involved in acute renal injury (AKI) has not been elucidated yet.

Purpose: A network pharmacology-based approach combined with molecular docking and in vitro and in vivo validation was performed to determine the bioactives, key targets, and potential pharmacological mechanism of FJHQD against AKI.

Materials and methods: The model of mouse renal ischemic reperfusion was adopted to verify the curative effect of FJHQD against renal injury. FJHQD was analyzed and separated by Ultra-High performance liquid chromatography (UHPLC). Bioactives and potential targets of FJHQD, as well as AKI-related targets, were retrieved from public databases. Crucial bioactive ingredients, potential targets, and signaling pathways were acquired through bioinformatics analysis, including protein-protein interaction (PPI), as well as the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Subsequently, molecular docking was carried out to predict the combination of active compounds with core targets. Besides, in vivo and vitro experiments were conducted to verify the findings.

Results: A total of 20 bioactive ingredients of FJHQD (top 10 positive ion and negative ion compounds) and 274 FJHQD-AKI overlaped targets were screened. Bioinformatics analysis revealed that apoptosis mediated by PI3K-AKT signaling pathway might play an important role in FJHQD against AKI. Further experiments showed that FJHQD alleviated I/R-induced renal injury and OGD/R induced TEC apoptosis by activating PI3K-AKT signaling pathway. Moreover, molecular docking suggested (9Z,12Z,14E)-16-Hydroxy-9,12,14-octadecatrienoic acid, 2-Hydroxyacetophenone, Liquiritigenin, (S)-[10]-Gingerol and Isookanin-7-O-glucoside may be potential candidate agents, among which, PIK3CA interacted with Liquiritigenin, (S)-[10]-Gingerol, Isookanin-7-O-glucoside and 2-Hydroxyacetophenone respectively. AKT1 interacted with (9Z,12Z,14E)-16-Hydroxy-9,12,14-octadecatrienoic acid and 2-Hydroxyacetophenone. Cell experiments showed that the most important ingredient of FJHQD, Liquiritigenin, could inhibit the TEC apoptosis and up-regulate PI3K-Akt signaling pathway, which further confirmed the prediction by network pharmacology strategy and molecular docking.

Conclusion: Our results comprehensively illustrated the bioactives, potential targets, and molecular mechanism of FJHQD against AKI. It also provided a promising strategy to uncover the scientific basis and therapeutic mechanism of TCM formulae in treating diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Phytomedicine
Phytomedicine 医学-药学
CiteScore
10.30
自引率
5.10%
发文量
670
审稿时长
91 days
期刊介绍: Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信