High-Throughput Shotgun Metagenomics of Microbial Footprints Uncovers a Cocktail of Noxious Antibiotic Resistance Genes in the Winam Gulf of Lake Victoria, Kenya.

IF 2.1 4区 医学 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Journal of Tropical Medicine Pub Date : 2024-12-23 eCollection Date: 2024-01-01 DOI:10.1155/jotm/7857069
Sandra Khatiebi, Kelvin Kiprotich, Zedekiah Onyando, John Mwaura, Clabe Wekesa, Celestine N Chi, Chrispinus Mulambalah, Patrick Okoth
{"title":"High-Throughput Shotgun Metagenomics of Microbial Footprints Uncovers a Cocktail of Noxious Antibiotic Resistance Genes in the Winam Gulf of Lake Victoria, Kenya.","authors":"Sandra Khatiebi, Kelvin Kiprotich, Zedekiah Onyando, John Mwaura, Clabe Wekesa, Celestine N Chi, Chrispinus Mulambalah, Patrick Okoth","doi":"10.1155/jotm/7857069","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> A diverse range of pollutants, including heavy metals, agrochemicals, pharmaceutical residues, illicit drugs, personal care products, and other anthropogenic contaminants, pose a significant threat to aquatic ecosystems. The Winam Gulf of Lake Victoria, heavily impacted by surrounding human activities, faces potential contamination from these pollutants. However, studies exploring the presence of antibiotic resistance genes (ARGs) in the lake remain limited. In the current study, a shotgun metagenomics approach was employed to identify ARGs and related pathways. Genomic DNA was extracted from water and sediment samples and sequenced using the high-throughput Illumina NovaSeq platform. Additionally, phenotypic antibiotic resistance was assessed using the disk diffusion method with commonly used antibiotics. <b>Results:</b> The analysis of metagenomes sequences from the Gulf ecosystem and Comprehensive Antibiotic Resistance Database (CARD) revealed worrying levels of ARGs in the lake. The study reported nine ARGs from the 37 high-risk resistant gene families previously documented by the World Health Organization (WHO). <i>Proteobacteria</i> had the highest relative abundance of antibiotic resistance (53%), <i>Bacteriodes</i> (4%), <i>Verrucomicrobia</i> (2%), <i>Planctomycetes Chloroflexi</i>, <i>Firmicutes</i> (2%), and other unclassified bacteria (39%). Genes that target protection, replacement, change, and antibiotic-resistant efflux were listed in order of dominance. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed antibiotic resistance to beta-lactamase and vancomycin. Phenotypic resistance to vancomycin, tetracycline, sulfamethoxazole, erythromycin, trimethoprim, tetracycline, and penicillin was reported through the zone of inhibition. <b>Conclusions:</b> This study highlights that the Winam Gulf of Lake Victoria in Kenya harbors a diverse array of antibiotic-resistant genes, including those conferring multidrug resistance. These findings suggest that the Gulf could be serving as a reservoir for more antibiotic-resistant genes, posing potential risks to both human health and aquatic biodiversity. The insights gained from this research can guide policy development for managing antibiotic resistance in Kenya.</p>","PeriodicalId":17527,"journal":{"name":"Journal of Tropical Medicine","volume":"2024 ","pages":"7857069"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685326/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tropical Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/jotm/7857069","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Background: A diverse range of pollutants, including heavy metals, agrochemicals, pharmaceutical residues, illicit drugs, personal care products, and other anthropogenic contaminants, pose a significant threat to aquatic ecosystems. The Winam Gulf of Lake Victoria, heavily impacted by surrounding human activities, faces potential contamination from these pollutants. However, studies exploring the presence of antibiotic resistance genes (ARGs) in the lake remain limited. In the current study, a shotgun metagenomics approach was employed to identify ARGs and related pathways. Genomic DNA was extracted from water and sediment samples and sequenced using the high-throughput Illumina NovaSeq platform. Additionally, phenotypic antibiotic resistance was assessed using the disk diffusion method with commonly used antibiotics. Results: The analysis of metagenomes sequences from the Gulf ecosystem and Comprehensive Antibiotic Resistance Database (CARD) revealed worrying levels of ARGs in the lake. The study reported nine ARGs from the 37 high-risk resistant gene families previously documented by the World Health Organization (WHO). Proteobacteria had the highest relative abundance of antibiotic resistance (53%), Bacteriodes (4%), Verrucomicrobia (2%), Planctomycetes Chloroflexi, Firmicutes (2%), and other unclassified bacteria (39%). Genes that target protection, replacement, change, and antibiotic-resistant efflux were listed in order of dominance. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed antibiotic resistance to beta-lactamase and vancomycin. Phenotypic resistance to vancomycin, tetracycline, sulfamethoxazole, erythromycin, trimethoprim, tetracycline, and penicillin was reported through the zone of inhibition. Conclusions: This study highlights that the Winam Gulf of Lake Victoria in Kenya harbors a diverse array of antibiotic-resistant genes, including those conferring multidrug resistance. These findings suggest that the Gulf could be serving as a reservoir for more antibiotic-resistant genes, posing potential risks to both human health and aquatic biodiversity. The insights gained from this research can guide policy development for managing antibiotic resistance in Kenya.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Tropical Medicine
Journal of Tropical Medicine Immunology and Microbiology-Parasitology
CiteScore
3.90
自引率
4.50%
发文量
0
审稿时长
14 weeks
期刊介绍: Journal of Tropical Medicine is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies on all aspects of tropical diseases. Articles on the pathology, diagnosis, and treatment of tropical diseases, parasites and their hosts, epidemiology, and public health issues will be considered. Journal of Tropical Medicine aims to facilitate the communication of advances addressing global health and mortality relating to tropical diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信