Ekta Tiwari, Dipti Shrimankar, Mahesh Maindarkar, Mrinalini Bhagawati, Jiah Kaur, Inder M Singh, Laura Mantella, Amer M Johri, Narendra N Khanna, Rajesh Singh, Sumit Chaudhary, Luca Saba, Mustafa Al-Maini, Vinod Anand, George Kitas, Jasjit S Suri
{"title":"Artificial intelligence-based cardiovascular/stroke risk stratification in women affected by autoimmune disorders: a narrative survey.","authors":"Ekta Tiwari, Dipti Shrimankar, Mahesh Maindarkar, Mrinalini Bhagawati, Jiah Kaur, Inder M Singh, Laura Mantella, Amer M Johri, Narendra N Khanna, Rajesh Singh, Sumit Chaudhary, Luca Saba, Mustafa Al-Maini, Vinod Anand, George Kitas, Jasjit S Suri","doi":"10.1007/s00296-024-05756-5","DOIUrl":null,"url":null,"abstract":"<p><p>Women are disproportionately affected by chronic autoimmune diseases (AD) like systemic lupus erythematosus (SLE), scleroderma, rheumatoid arthritis (RA), and Sjögren's syndrome. Traditional evaluations often underestimate the associated cardiovascular disease (CVD) and stroke risk in women having AD. Vitamin D deficiency increases susceptibility to these conditions. CVD risk prediction in AD can benefit from surrogate biomarker for coronary artery disease (CAD), such as carotid ultrasound. Due to non-linearity in the CVD risk stratification, we use artificial intelligence-based system using AD biomarkers and carotid ultrasound. Investigate the relationship between AD and CVD/stroke markers including autoantibody-influenced plaque load. Second, to study the surrogate biomarkers for the CAD and gather radiomics-based features such as carotid intima-media thickness (cIMT), and plaque area (PA). Third and final, explore the automated CVD/stroke risk identification using advanced machine learning (ML) and deep learning (DL) paradigms. Analysed biomarker data from women with AD, including carotid ultrasonography imaging, clinical parameters, autoantibody profiles, and vitamin D levels. Proposed artificial intelligence (AI) models to predict CVD/stroke risk accurately in AD for women. There is a strong association between AD duration and elevated cIMT/PA, with increased CVD risk linked to higher rheumatoid factor (RF) and anti-citrullinated peptide antibodies (ACPAs) levels. AI models outperformed conventional methods by integrating imaging data and disorder-specific factors. Interdisciplinary collaboration is crucial for managing CVD/stroke in women with chronic autoimmune diseases. AI-based assisted risk stratification methods may improve treatment decision-making and cardiovascular outcomes.</p>","PeriodicalId":21322,"journal":{"name":"Rheumatology International","volume":"45 1","pages":"14"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rheumatology International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00296-024-05756-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Women are disproportionately affected by chronic autoimmune diseases (AD) like systemic lupus erythematosus (SLE), scleroderma, rheumatoid arthritis (RA), and Sjögren's syndrome. Traditional evaluations often underestimate the associated cardiovascular disease (CVD) and stroke risk in women having AD. Vitamin D deficiency increases susceptibility to these conditions. CVD risk prediction in AD can benefit from surrogate biomarker for coronary artery disease (CAD), such as carotid ultrasound. Due to non-linearity in the CVD risk stratification, we use artificial intelligence-based system using AD biomarkers and carotid ultrasound. Investigate the relationship between AD and CVD/stroke markers including autoantibody-influenced plaque load. Second, to study the surrogate biomarkers for the CAD and gather radiomics-based features such as carotid intima-media thickness (cIMT), and plaque area (PA). Third and final, explore the automated CVD/stroke risk identification using advanced machine learning (ML) and deep learning (DL) paradigms. Analysed biomarker data from women with AD, including carotid ultrasonography imaging, clinical parameters, autoantibody profiles, and vitamin D levels. Proposed artificial intelligence (AI) models to predict CVD/stroke risk accurately in AD for women. There is a strong association between AD duration and elevated cIMT/PA, with increased CVD risk linked to higher rheumatoid factor (RF) and anti-citrullinated peptide antibodies (ACPAs) levels. AI models outperformed conventional methods by integrating imaging data and disorder-specific factors. Interdisciplinary collaboration is crucial for managing CVD/stroke in women with chronic autoimmune diseases. AI-based assisted risk stratification methods may improve treatment decision-making and cardiovascular outcomes.
期刊介绍:
RHEUMATOLOGY INTERNATIONAL is an independent journal reflecting world-wide progress in the research, diagnosis and treatment of the various rheumatic diseases. It is designed to serve researchers and clinicians in the field of rheumatology.
RHEUMATOLOGY INTERNATIONAL will cover all modern trends in clinical research as well as in the management of rheumatic diseases. Special emphasis will be given to public health issues related to rheumatic diseases, applying rheumatology research to clinical practice, epidemiology of rheumatic diseases, diagnostic tests for rheumatic diseases, patient reported outcomes (PROs) in rheumatology and evidence on education of rheumatology. Contributions to these topics will appear in the form of original publications, short communications, editorials, and reviews. "Letters to the editor" will be welcome as an enhancement to discussion. Basic science research, including in vitro or animal studies, is discouraged to submit, as we will only review studies on humans with an epidemological or clinical perspective. Case reports without a proper review of the literatura (Case-based Reviews) will not be published. Every effort will be made to ensure speed of publication while maintaining a high standard of contents and production.
Manuscripts submitted for publication must contain a statement to the effect that all human studies have been reviewed by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in an appropriate version of the 1964 Declaration of Helsinki. It should also be stated clearly in the text that all persons gave their informed consent prior to their inclusion in the study. Details that might disclose the identity of the subjects under study should be omitted.