Molecular phylogeny, morphology, and ultrastructure of a Mesomycetozoea member, Sphaeroforma nootkatensis isolated from Pacific oyster, Crassostrea gigas, on the Southern coast of Korea.
Seung-Hyeon Kim, S D N K Bathige, Donghyun Lee, W A A H Kalhari, Hyoun Joong Kim, Kyung-Il Park
{"title":"Molecular phylogeny, morphology, and ultrastructure of a Mesomycetozoea member, Sphaeroforma nootkatensis isolated from Pacific oyster, Crassostrea gigas, on the Southern coast of Korea.","authors":"Seung-Hyeon Kim, S D N K Bathige, Donghyun Lee, W A A H Kalhari, Hyoun Joong Kim, Kyung-Il Park","doi":"10.1016/j.protis.2024.126084","DOIUrl":null,"url":null,"abstract":"<p><p>This study discovered the first Asian population of Sphaeroforma nootkatensis (SphX), a member of Mesomycetozoea, in the southern coastal region of South Korea. Although investigating parasites in Pacific oysters (Crassostrea gigas), a single-cell microorganism was isolated from gill tissues. Comprehensive phylogenetic analysis of its 18S rDNA revealed its placement within the order Ichthyophonida, class Mesomycetozoea. SphX formed a distinct cluster within Sphaeroforma spp., separate from Pseudoperkinsus tapetis. Morphological examinations of in vitro cultured cells revealed two distinctive life stages characterized by multilobe and granular sporangium, accompanied by corresponding non-motile larger and motile smaller endospores, respectively. Scanning electron microscope analysis depicted lobular and smooth surfaces on vegetative cells, indicative of differing life cycle stages. Transmission electron microscope observations revealed intriguing features consistent with previous reports on Mesomycetozoea. A prominent fibrillar structure was noted in a vegetative cell. In contrast, smaller endospores were observed with cilia-like structures surrounding the cell wall, indicating their mode of movement. The Ray's fluid thioglycollate medium assay showed that SphX cells were digested, whereas some small endospores remained resistant. This discovery provides novel insights into the life stages of Mesomycetozoans and geographical distribution and underscores the importance of monitoring oyster health for effective aquaculture management.</p>","PeriodicalId":20781,"journal":{"name":"Protist","volume":"176 ","pages":"126084"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.protis.2024.126084","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study discovered the first Asian population of Sphaeroforma nootkatensis (SphX), a member of Mesomycetozoea, in the southern coastal region of South Korea. Although investigating parasites in Pacific oysters (Crassostrea gigas), a single-cell microorganism was isolated from gill tissues. Comprehensive phylogenetic analysis of its 18S rDNA revealed its placement within the order Ichthyophonida, class Mesomycetozoea. SphX formed a distinct cluster within Sphaeroforma spp., separate from Pseudoperkinsus tapetis. Morphological examinations of in vitro cultured cells revealed two distinctive life stages characterized by multilobe and granular sporangium, accompanied by corresponding non-motile larger and motile smaller endospores, respectively. Scanning electron microscope analysis depicted lobular and smooth surfaces on vegetative cells, indicative of differing life cycle stages. Transmission electron microscope observations revealed intriguing features consistent with previous reports on Mesomycetozoea. A prominent fibrillar structure was noted in a vegetative cell. In contrast, smaller endospores were observed with cilia-like structures surrounding the cell wall, indicating their mode of movement. The Ray's fluid thioglycollate medium assay showed that SphX cells were digested, whereas some small endospores remained resistant. This discovery provides novel insights into the life stages of Mesomycetozoans and geographical distribution and underscores the importance of monitoring oyster health for effective aquaculture management.
期刊介绍:
Protist is the international forum for reporting substantial and novel findings in any area of research on protists. The criteria for acceptance of manuscripts are scientific excellence, significance, and interest for a broad readership. Suitable subject areas include: molecular, cell and developmental biology, biochemistry, systematics and phylogeny, and ecology of protists. Both autotrophic and heterotrophic protists as well as parasites are covered. The journal publishes original papers, short historical perspectives and includes a news and views section.