Progressive lung fibrosis: reprogramming a genetically vulnerable bronchoalveolar epithelium.

IF 13.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
James P Bridges, Eszter K Vladar, Jonathan S Kurche, Andrei Krivoi, Ian T Stancil, Evgenia Dobrinskikh, Yan Hu, Sarah K Sasse, Joyce S Lee, Rachel Z Blumhagen, Ivana V Yang, Anthony N Gerber, Anna L Peljto, Christopher M Evans, Elizabeth F Redente, David Wh Riches, David A Schwartz
{"title":"Progressive lung fibrosis: reprogramming a genetically vulnerable bronchoalveolar epithelium.","authors":"James P Bridges, Eszter K Vladar, Jonathan S Kurche, Andrei Krivoi, Ian T Stancil, Evgenia Dobrinskikh, Yan Hu, Sarah K Sasse, Joyce S Lee, Rachel Z Blumhagen, Ivana V Yang, Anthony N Gerber, Anna L Peljto, Christopher M Evans, Elizabeth F Redente, David Wh Riches, David A Schwartz","doi":"10.1172/JCI183836","DOIUrl":null,"url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is etiologically complex, with well-documented genetic and nongenetic origins. In this Review, we speculate that the development of IPF requires two hits: the first establishes a vulnerable bronchoalveolar epithelium, and the second triggers mechanisms that reprogram distal epithelia to initiate and perpetuate a profibrotic phenotype. While vulnerability of the bronchoalveolar epithelia is most often driven by common or rare genetic variants, subsequent injury of the bronchoalveolar epithelia results in persistent changes in cell biology that disrupt tissue homeostasis and activate fibroblasts. The dynamic biology of IPF can best be contextualized etiologically and temporally, including stages of vulnerability, early disease, and persistent and progressive lung fibrosis. These dimensions of IPF highlight critical mechanisms that adversely disrupt epithelial function, activate fibroblasts, and lead to lung remodeling. Together with better recognition of early disease, this conceptual approach should lead to the development of novel therapeutics directed at the etiologic and temporal drivers of lung fibrosis that will ultimately transform the care of patients with IPF from palliative to curative.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"135 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684817/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI183836","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Idiopathic pulmonary fibrosis (IPF) is etiologically complex, with well-documented genetic and nongenetic origins. In this Review, we speculate that the development of IPF requires two hits: the first establishes a vulnerable bronchoalveolar epithelium, and the second triggers mechanisms that reprogram distal epithelia to initiate and perpetuate a profibrotic phenotype. While vulnerability of the bronchoalveolar epithelia is most often driven by common or rare genetic variants, subsequent injury of the bronchoalveolar epithelia results in persistent changes in cell biology that disrupt tissue homeostasis and activate fibroblasts. The dynamic biology of IPF can best be contextualized etiologically and temporally, including stages of vulnerability, early disease, and persistent and progressive lung fibrosis. These dimensions of IPF highlight critical mechanisms that adversely disrupt epithelial function, activate fibroblasts, and lead to lung remodeling. Together with better recognition of early disease, this conceptual approach should lead to the development of novel therapeutics directed at the etiologic and temporal drivers of lung fibrosis that will ultimately transform the care of patients with IPF from palliative to curative.

进行性肺纤维化:基因易损支气管肺泡上皮的重编程。
特发性肺纤维化(IPF)病因复杂,有充分的遗传和非遗传起源。在这篇综述中,我们推测IPF的发展需要两个打击:第一个是建立一个易损的支气管肺泡上皮,第二个是触发机制,重新编程远端上皮,以启动和延续纤维化表型。虽然支气管肺泡上皮的易感性通常是由常见或罕见的遗传变异驱动的,但随后的支气管肺泡上皮损伤会导致细胞生物学的持续变化,从而破坏组织稳态并激活成纤维细胞。IPF的动态生物学可以最好地从病因学和时间上进行背景化,包括易感性阶段、早期疾病阶段、持续和进行性肺纤维化阶段。IPF的这些维度突出了破坏上皮功能、激活成纤维细胞和导致肺重塑的关键机制。随着对早期疾病的更好识别,这种概念性方法将导致针对肺纤维化的病因和时间驱动因素的新型治疗方法的发展,最终将IPF患者的护理从姑息治疗转变为治愈治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信