Valeria Flores Malavet, Kunal Dhume, Ali Satchmei, Andrea C Arvelo, Aaron J Beaird, Siva N Annamalai, Lauren A Kimball, K Kai McKinstry, Tara M Strutt
{"title":"Preexisting vaccine-primed heterosubtypic T cell immunity protects the maternal-fetal unit from adverse influenza outcomes in mice.","authors":"Valeria Flores Malavet, Kunal Dhume, Ali Satchmei, Andrea C Arvelo, Aaron J Beaird, Siva N Annamalai, Lauren A Kimball, K Kai McKinstry, Tara M Strutt","doi":"10.1172/JCI179230","DOIUrl":null,"url":null,"abstract":"<p><p>The risk of severe outcomes of influenza increases during pregnancy. Whether vaccine-induced T cell memory-primed prepregnancy retains the ability to mediate protection during pregnancy, when systemic levels of several hormones with putative immunomodulatory functions are increased, is unknown. Here, using murine adoptive transfer systems and a translationally relevant model of cold-adapted live-attenuated influenza A virus vaccination, we show that preexisting virus-specific memory T cell responses are largely unaltered and highly protective against heterotypic viral challenges during pregnancy. Expression of the transcription factor T-bet, which is upregulated in antiviral T cells responding in pregnant mice, is critical in preventing hormone-associated gain of detrimental T helper type 2 (TH2) attributes reported in other settings. Beyond antiviral effects, preexisting vaccine-primed T cell immunity prevents metabolic dysfunction in gravid dams and adverse neonatal outcomes often associated with maternal influenza infection. These results demonstrate robust protection of the maternal-fetal unit from severe consequences of respiratory virus infection by preexisting T cell immunity.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"135 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684801/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI179230","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The risk of severe outcomes of influenza increases during pregnancy. Whether vaccine-induced T cell memory-primed prepregnancy retains the ability to mediate protection during pregnancy, when systemic levels of several hormones with putative immunomodulatory functions are increased, is unknown. Here, using murine adoptive transfer systems and a translationally relevant model of cold-adapted live-attenuated influenza A virus vaccination, we show that preexisting virus-specific memory T cell responses are largely unaltered and highly protective against heterotypic viral challenges during pregnancy. Expression of the transcription factor T-bet, which is upregulated in antiviral T cells responding in pregnant mice, is critical in preventing hormone-associated gain of detrimental T helper type 2 (TH2) attributes reported in other settings. Beyond antiviral effects, preexisting vaccine-primed T cell immunity prevents metabolic dysfunction in gravid dams and adverse neonatal outcomes often associated with maternal influenza infection. These results demonstrate robust protection of the maternal-fetal unit from severe consequences of respiratory virus infection by preexisting T cell immunity.
期刊介绍:
The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science.
The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others.
The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.