Yi-Ting Chen, Ming-Ming Jiang, Carolina Leynes, Mary Adeyeye, Camilla F Majano, Barakat Ibrahim, Urszula Polak, George Hung, Zixue Jin, Denise G Lanza, Lan Liao, Brian Dawson, Yuqing Chen-Evenson, Oscar E Ruiz, Richard J Gibbons, Jason D Heaney, Yangjin Bae, Brendan Lee
{"title":"ATRX silences Cartpt expression in osteoblastic cells during skeletal development.","authors":"Yi-Ting Chen, Ming-Ming Jiang, Carolina Leynes, Mary Adeyeye, Camilla F Majano, Barakat Ibrahim, Urszula Polak, George Hung, Zixue Jin, Denise G Lanza, Lan Liao, Brian Dawson, Yuqing Chen-Evenson, Oscar E Ruiz, Richard J Gibbons, Jason D Heaney, Yangjin Bae, Brendan Lee","doi":"10.1172/JCI163587","DOIUrl":null,"url":null,"abstract":"<p><p>ATP-dependent chromatin remodeling protein ATRX is an essential regulator involved in maintenance of DNA structure and chromatin state and regulation of gene expression during development. ATRX was originally identified as the monogenic cause of X-linked α-thalassemia mental retardation (ATR-X) syndrome. Affected individuals display a variety of developmental abnormalities and skeletal deformities. Studies from others investigated the role of ATRX in skeletal development by tissue-specific Atrx knockout. However, the impact of ATRX during early skeletal development has not been examined. Using preosteoblast-specific Atrx conditional knockout mice, we observed increased trabecular bone mass and decreased osteoclast number in bone. In vitro coculture of Atrx conditional knockout bone marrow stromal cells (BMSCs) with WT splenocytes showed impaired osteoclast differentiation. Additionally, Atrx deletion was associated with decreased receptor activator of nuclear factor κ-B ligand (Rankl)/ osteoprotegerin (Opg) expression ratio in BMSCs. Notably, Atrx-deficient osteolineage cells expressed high levels of the neuropeptide cocaine- and amphetamine-regulated transcript prepropeptide (Cartpt). Mechanistically, ATRX suppresses Cartpt transcription by binding to the promoter, which is otherwise poised for Cartpt expression by RUNX2 binding to the distal enhancer. Finally, Cartpt silencing in Atrx conditional knockout BMSCs rescued the molecular phenotype by increasing the Rankl/Opg expression ratio. Together, our data show a potent repressor function of ATRX in restricting Cartpt expression during skeletal development.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"135 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684799/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI163587","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
ATP-dependent chromatin remodeling protein ATRX is an essential regulator involved in maintenance of DNA structure and chromatin state and regulation of gene expression during development. ATRX was originally identified as the monogenic cause of X-linked α-thalassemia mental retardation (ATR-X) syndrome. Affected individuals display a variety of developmental abnormalities and skeletal deformities. Studies from others investigated the role of ATRX in skeletal development by tissue-specific Atrx knockout. However, the impact of ATRX during early skeletal development has not been examined. Using preosteoblast-specific Atrx conditional knockout mice, we observed increased trabecular bone mass and decreased osteoclast number in bone. In vitro coculture of Atrx conditional knockout bone marrow stromal cells (BMSCs) with WT splenocytes showed impaired osteoclast differentiation. Additionally, Atrx deletion was associated with decreased receptor activator of nuclear factor κ-B ligand (Rankl)/ osteoprotegerin (Opg) expression ratio in BMSCs. Notably, Atrx-deficient osteolineage cells expressed high levels of the neuropeptide cocaine- and amphetamine-regulated transcript prepropeptide (Cartpt). Mechanistically, ATRX suppresses Cartpt transcription by binding to the promoter, which is otherwise poised for Cartpt expression by RUNX2 binding to the distal enhancer. Finally, Cartpt silencing in Atrx conditional knockout BMSCs rescued the molecular phenotype by increasing the Rankl/Opg expression ratio. Together, our data show a potent repressor function of ATRX in restricting Cartpt expression during skeletal development.
期刊介绍:
The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science.
The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others.
The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.