ATRX silences Cartpt expression in osteoblastic cells during skeletal development.

IF 13.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Yi-Ting Chen, Ming-Ming Jiang, Carolina Leynes, Mary Adeyeye, Camilla F Majano, Barakat Ibrahim, Urszula Polak, George Hung, Zixue Jin, Denise G Lanza, Lan Liao, Brian Dawson, Yuqing Chen-Evenson, Oscar E Ruiz, Richard J Gibbons, Jason D Heaney, Yangjin Bae, Brendan Lee
{"title":"ATRX silences Cartpt expression in osteoblastic cells during skeletal development.","authors":"Yi-Ting Chen, Ming-Ming Jiang, Carolina Leynes, Mary Adeyeye, Camilla F Majano, Barakat Ibrahim, Urszula Polak, George Hung, Zixue Jin, Denise G Lanza, Lan Liao, Brian Dawson, Yuqing Chen-Evenson, Oscar E Ruiz, Richard J Gibbons, Jason D Heaney, Yangjin Bae, Brendan Lee","doi":"10.1172/JCI163587","DOIUrl":null,"url":null,"abstract":"<p><p>ATP-dependent chromatin remodeling protein ATRX is an essential regulator involved in maintenance of DNA structure and chromatin state and regulation of gene expression during development. ATRX was originally identified as the monogenic cause of X-linked α-thalassemia mental retardation (ATR-X) syndrome. Affected individuals display a variety of developmental abnormalities and skeletal deformities. Studies from others investigated the role of ATRX in skeletal development by tissue-specific Atrx knockout. However, the impact of ATRX during early skeletal development has not been examined. Using preosteoblast-specific Atrx conditional knockout mice, we observed increased trabecular bone mass and decreased osteoclast number in bone. In vitro coculture of Atrx conditional knockout bone marrow stromal cells (BMSCs) with WT splenocytes showed impaired osteoclast differentiation. Additionally, Atrx deletion was associated with decreased receptor activator of nuclear factor κ-B ligand (Rankl)/ osteoprotegerin (Opg) expression ratio in BMSCs. Notably, Atrx-deficient osteolineage cells expressed high levels of the neuropeptide cocaine- and amphetamine-regulated transcript prepropeptide (Cartpt). Mechanistically, ATRX suppresses Cartpt transcription by binding to the promoter, which is otherwise poised for Cartpt expression by RUNX2 binding to the distal enhancer. Finally, Cartpt silencing in Atrx conditional knockout BMSCs rescued the molecular phenotype by increasing the Rankl/Opg expression ratio. Together, our data show a potent repressor function of ATRX in restricting Cartpt expression during skeletal development.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"135 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684799/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI163587","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

ATP-dependent chromatin remodeling protein ATRX is an essential regulator involved in maintenance of DNA structure and chromatin state and regulation of gene expression during development. ATRX was originally identified as the monogenic cause of X-linked α-thalassemia mental retardation (ATR-X) syndrome. Affected individuals display a variety of developmental abnormalities and skeletal deformities. Studies from others investigated the role of ATRX in skeletal development by tissue-specific Atrx knockout. However, the impact of ATRX during early skeletal development has not been examined. Using preosteoblast-specific Atrx conditional knockout mice, we observed increased trabecular bone mass and decreased osteoclast number in bone. In vitro coculture of Atrx conditional knockout bone marrow stromal cells (BMSCs) with WT splenocytes showed impaired osteoclast differentiation. Additionally, Atrx deletion was associated with decreased receptor activator of nuclear factor κ-B ligand (Rankl)/ osteoprotegerin (Opg) expression ratio in BMSCs. Notably, Atrx-deficient osteolineage cells expressed high levels of the neuropeptide cocaine- and amphetamine-regulated transcript prepropeptide (Cartpt). Mechanistically, ATRX suppresses Cartpt transcription by binding to the promoter, which is otherwise poised for Cartpt expression by RUNX2 binding to the distal enhancer. Finally, Cartpt silencing in Atrx conditional knockout BMSCs rescued the molecular phenotype by increasing the Rankl/Opg expression ratio. Together, our data show a potent repressor function of ATRX in restricting Cartpt expression during skeletal development.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信