Suchitha G P, Akhila B Rai, Ravishankar Pervaje, Chinmaya Narayana Kotimoole, Prashant Kumar Modi, T S Keshava Prasad, Shobha Dagamajalu
{"title":"Proteomic analysis reveals anticancer mechanisms of Bhallataka taila in inhibiting lung cancer progression and metastasis.","authors":"Suchitha G P, Akhila B Rai, Ravishankar Pervaje, Chinmaya Narayana Kotimoole, Prashant Kumar Modi, T S Keshava Prasad, Shobha Dagamajalu","doi":"10.1039/d4mo00156g","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer remains the leading cause of cancer-related deaths worldwide due to its poor prognosis. Despite significant advancements in the understanding of cancer development, improvements in diagnostic methods, and multimodal therapeutic regimens, the prognosis of lung cancer has still not improved. Therefore, it is reasonable to look for newer and alternative medicines for treatment. Bhallataka nut extract, derived from the seeds of <i>Semecarpus anacardium</i>, is known for its anti-inflammatory and antioxidant properties, suggesting potential as a treatment for cancer. In this study, we investigated the molecular networks associated with the Bhallataka taila-mediated inhibition of lung adenocarcinoma. Treating lung cancer cell lines with Bhallataka taila resulted in decreased colony formation, proliferation, and migration, and increased apoptosis. Using a tandem mass tag (TMT)-based temporal quantitative proteomic analysis, we identified 173 overexpressed and 249 downregulated proteins among a total of 2879 proteins. Significantly altered proteins are associated with lung cancer progression, metastasis, invasion, migration, and epithelial-mesenchymal transition (EMT). The analysis of these altered proteins revealed molecular networks underlying the anticancer mechanisms of Bhallataka taila. Validation of these proteins and pathways affected by Bhallataka taila confirmed its utility in cancer treatment.</p>","PeriodicalId":19065,"journal":{"name":"Molecular omics","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular omics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1039/d4mo00156g","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lung cancer remains the leading cause of cancer-related deaths worldwide due to its poor prognosis. Despite significant advancements in the understanding of cancer development, improvements in diagnostic methods, and multimodal therapeutic regimens, the prognosis of lung cancer has still not improved. Therefore, it is reasonable to look for newer and alternative medicines for treatment. Bhallataka nut extract, derived from the seeds of Semecarpus anacardium, is known for its anti-inflammatory and antioxidant properties, suggesting potential as a treatment for cancer. In this study, we investigated the molecular networks associated with the Bhallataka taila-mediated inhibition of lung adenocarcinoma. Treating lung cancer cell lines with Bhallataka taila resulted in decreased colony formation, proliferation, and migration, and increased apoptosis. Using a tandem mass tag (TMT)-based temporal quantitative proteomic analysis, we identified 173 overexpressed and 249 downregulated proteins among a total of 2879 proteins. Significantly altered proteins are associated with lung cancer progression, metastasis, invasion, migration, and epithelial-mesenchymal transition (EMT). The analysis of these altered proteins revealed molecular networks underlying the anticancer mechanisms of Bhallataka taila. Validation of these proteins and pathways affected by Bhallataka taila confirmed its utility in cancer treatment.
Molecular omicsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
5.40
自引率
3.40%
发文量
91
期刊介绍:
Molecular Omics publishes high-quality research from across the -omics sciences.
Topics include, but are not limited to:
-omics studies to gain mechanistic insight into biological processes – for example, determining the mode of action of a drug or the basis of a particular phenotype, such as drought tolerance
-omics studies for clinical applications with validation, such as finding biomarkers for diagnostics or potential new drug targets
-omics studies looking at the sub-cellular make-up of cells – for example, the subcellular localisation of certain proteins or post-translational modifications or new imaging techniques
-studies presenting new methods and tools to support omics studies, including new spectroscopic/chromatographic techniques, chip-based/array technologies and new classification/data analysis techniques. New methods should be proven and demonstrate an advance in the field.
Molecular Omics only accepts articles of high importance and interest that provide significant new insight into important chemical or biological problems. This could be fundamental research that significantly increases understanding or research that demonstrates clear functional benefits.
Papers reporting new results that could be routinely predicted, do not show a significant improvement over known research, or are of interest only to the specialist in the area are not suitable for publication in Molecular Omics.