Cara Jeffrey, Brent Kaiser, Richard Trethowan, Laura Ziems
{"title":"Genome-wide association study reveals heat tolerance QTL for canopy-closure and early flowering in chickpea.","authors":"Cara Jeffrey, Brent Kaiser, Richard Trethowan, Laura Ziems","doi":"10.3389/fpls.2024.1458250","DOIUrl":null,"url":null,"abstract":"<p><p>Chickpeas are a vital source of protein and starch for a large portion of the world's population and are known to be impacted by heat stress at every life stage. Previously known as an \"Orphan Legume\", little is known of the genetic control of heat stress tolerance, and most previous research has focused on heat avoidance rather than tolerance. This study utilised a population of 148 chickpea genotypes, primarily Kabulis, in 12 field trials conducted at 2 locations, two sowing periods, and across 3 years. Physiology was examined, and data was paired with Diversity Arrays Technology (DArT) sequencing to perform a Genome Wide Association Study to connect phenotypic and genotypic regions. Fourteen QTL related to yield, seed size, time to flowering, time to maturity, and final canopy closure were found. Among these, are the first Quantitative Trait Loci (QTL) ever identified for canopy closure in chickpea, along with a QTL that is likely linked to early flowering under heat stress. Early flowering in this case refers to a cultivar flowering significantly earlier than the others in the genotype set. Additionally, several other QTL provide validation of previous research. These QTL hotspots that can be targeted for selective breeding of several traits concurrently. Overall, new targets for genome assisted breeding for heat tolerance in chickpea were identified and can be utilised by the breeder community to improve the status of selective breeding for heat tolerance in this crop.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1458250"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685022/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1458250","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Chickpeas are a vital source of protein and starch for a large portion of the world's population and are known to be impacted by heat stress at every life stage. Previously known as an "Orphan Legume", little is known of the genetic control of heat stress tolerance, and most previous research has focused on heat avoidance rather than tolerance. This study utilised a population of 148 chickpea genotypes, primarily Kabulis, in 12 field trials conducted at 2 locations, two sowing periods, and across 3 years. Physiology was examined, and data was paired with Diversity Arrays Technology (DArT) sequencing to perform a Genome Wide Association Study to connect phenotypic and genotypic regions. Fourteen QTL related to yield, seed size, time to flowering, time to maturity, and final canopy closure were found. Among these, are the first Quantitative Trait Loci (QTL) ever identified for canopy closure in chickpea, along with a QTL that is likely linked to early flowering under heat stress. Early flowering in this case refers to a cultivar flowering significantly earlier than the others in the genotype set. Additionally, several other QTL provide validation of previous research. These QTL hotspots that can be targeted for selective breeding of several traits concurrently. Overall, new targets for genome assisted breeding for heat tolerance in chickpea were identified and can be utilised by the breeder community to improve the status of selective breeding for heat tolerance in this crop.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.