Convergence of Hypervirulence and Multidrug-Resistance in Burkholderia cepacia Complex Isolates from Patients with COVID-19.

IF 2.9 3区 医学 Q2 INFECTIOUS DISEASES
Infection and Drug Resistance Pub Date : 2024-12-27 eCollection Date: 2024-01-01 DOI:10.2147/IDR.S495676
Mengjiao Du, Cheng Chi, LuYing Xiong, Jincheng Rong, Maoli Yi, Qi Zhao, Xiaohui Chi
{"title":"Convergence of Hypervirulence and Multidrug-Resistance in <i>Burkholderia cepacia</i> Complex Isolates from Patients with COVID-19.","authors":"Mengjiao Du, Cheng Chi, LuYing Xiong, Jincheng Rong, Maoli Yi, Qi Zhao, Xiaohui Chi","doi":"10.2147/IDR.S495676","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong><i>Burkholderia</i> is a conditioned pathogen in the medical setting and mainly affects patients with cystic fibrosis. We found co-infection with <i>Burkholderia cepacia</i> complex (Bcc) in many patients with respiratory tract infections, including H7N9 and COVID-19. However, previous studies have not focused on co-infections with BCC and respiratory viruses. Therefore, this study attempted to clarify the evolution of COVID-19-Bcc and H7N9-Bcc in terms of genetic background, antibiotic resistance, and virulence phenotypes.</p><p><strong>Methods: </strong>This study retrospectively collected 49 Bcc isolated from patients with H7N9 and COVID-19 in a tertiary hospital of Zhejiang Province, of which 42 isolates were isolated from patients with H7N9, seven isolates were isolated from patients with COVID-19. The collected isolates were tested for antibiotic susceptibility, <i>Galleria mellonella</i> infection model, and whole-genome COVID-19-Bcc Characterization.</p><p><strong>Results: </strong>The test results of 49 strains of Bcc showed that the strains isolated from COVID-19 patients accounted for 57.1% of multidrug-resistance resistant strains. Statistical analysis of the median lethal time of <i>G. mellonella</i> showed that the median fatal time for COVID-19-Bcc was shorter and more virulent than that of H7N9-Bcc (P<0.05). The results of phylogenetic analysis indicated that COVID-19-Bcc may have evolved from H7N9-Bcc.</p><p><strong>Conclusion: </strong>In this study, co-infection with BCC in many patients with respiratory tract infections, including H7N9 and COVID-19, was first identified and clarified that COVID-19-Bcc may have evolved from H7N9-Bcc and has the characteristics of hypervirulence and multidrug resistance.</p>","PeriodicalId":13577,"journal":{"name":"Infection and Drug Resistance","volume":"17 ","pages":"5855-5866"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687121/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection and Drug Resistance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IDR.S495676","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Burkholderia is a conditioned pathogen in the medical setting and mainly affects patients with cystic fibrosis. We found co-infection with Burkholderia cepacia complex (Bcc) in many patients with respiratory tract infections, including H7N9 and COVID-19. However, previous studies have not focused on co-infections with BCC and respiratory viruses. Therefore, this study attempted to clarify the evolution of COVID-19-Bcc and H7N9-Bcc in terms of genetic background, antibiotic resistance, and virulence phenotypes.

Methods: This study retrospectively collected 49 Bcc isolated from patients with H7N9 and COVID-19 in a tertiary hospital of Zhejiang Province, of which 42 isolates were isolated from patients with H7N9, seven isolates were isolated from patients with COVID-19. The collected isolates were tested for antibiotic susceptibility, Galleria mellonella infection model, and whole-genome COVID-19-Bcc Characterization.

Results: The test results of 49 strains of Bcc showed that the strains isolated from COVID-19 patients accounted for 57.1% of multidrug-resistance resistant strains. Statistical analysis of the median lethal time of G. mellonella showed that the median fatal time for COVID-19-Bcc was shorter and more virulent than that of H7N9-Bcc (P<0.05). The results of phylogenetic analysis indicated that COVID-19-Bcc may have evolved from H7N9-Bcc.

Conclusion: In this study, co-infection with BCC in many patients with respiratory tract infections, including H7N9 and COVID-19, was first identified and clarified that COVID-19-Bcc may have evolved from H7N9-Bcc and has the characteristics of hypervirulence and multidrug resistance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Infection and Drug Resistance
Infection and Drug Resistance Medicine-Pharmacology (medical)
CiteScore
5.60
自引率
7.70%
发文量
826
审稿时长
16 weeks
期刊介绍: About Journal Editors Peer Reviewers Articles Article Publishing Charges Aims and Scope Call For Papers ISSN: 1178-6973 Editor-in-Chief: Professor Suresh Antony An international, peer-reviewed, open access journal that focuses on the optimal treatment of infection (bacterial, fungal and viral) and the development and institution of preventative strategies to minimize the development and spread of resistance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信