Alleviating the medical strain: a triage method via cross-domain text classification.

IF 2.1 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in Computational Neuroscience Pub Date : 2024-12-18 eCollection Date: 2024-01-01 DOI:10.3389/fncom.2024.1468519
Xiao Xiao, Shuqin Wang, Feng Jiang, Tingyue Qi, Wei Wang
{"title":"Alleviating the medical strain: a triage method via cross-domain text classification.","authors":"Xiao Xiao, Shuqin Wang, Feng Jiang, Tingyue Qi, Wei Wang","doi":"10.3389/fncom.2024.1468519","DOIUrl":null,"url":null,"abstract":"<p><p>It is a universal phenomenon for patients who do not know which clinical department to register in large general hospitals. Although triage nurses can help patients, due to the larger number of patients, they have to stand in a queue for minutes to consult. Recently, there have already been some efforts to devote deep-learning techniques or pre-trained language models (PLMs) to triage recommendations. However, these methods may suffer two main limitations: (1) These methods typically require a certain amount of labeled or unlabeled data for model training, which are not always accessible and costly to acquire. (2) These methods have not taken into account the distortion of semantic feature structure and the loss of category discriminability in the model training. To overcome these limitations, in this study, we propose a cross-domain text classification method based on prompt-tuning, which can classify patients' questions or texts about their symptoms into several given categories to give suggestions on which kind of consulting room patients could choose. Specifically, first, different prompt templates are manually crafted based on various data contents, embedding source domain information into the prompt templates to generate another text with similar semantic feature structures for performing classification tasks. Then, five different strategies are employed to expand the label word space for modifying prompts, and the integration of these strategies is used as the final verbalizer. The extensive experiments on Chinese Triage datasets demonstrate that our method achieved state-of-the-art performance.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"18 ","pages":"1468519"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688176/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1468519","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

It is a universal phenomenon for patients who do not know which clinical department to register in large general hospitals. Although triage nurses can help patients, due to the larger number of patients, they have to stand in a queue for minutes to consult. Recently, there have already been some efforts to devote deep-learning techniques or pre-trained language models (PLMs) to triage recommendations. However, these methods may suffer two main limitations: (1) These methods typically require a certain amount of labeled or unlabeled data for model training, which are not always accessible and costly to acquire. (2) These methods have not taken into account the distortion of semantic feature structure and the loss of category discriminability in the model training. To overcome these limitations, in this study, we propose a cross-domain text classification method based on prompt-tuning, which can classify patients' questions or texts about their symptoms into several given categories to give suggestions on which kind of consulting room patients could choose. Specifically, first, different prompt templates are manually crafted based on various data contents, embedding source domain information into the prompt templates to generate another text with similar semantic feature structures for performing classification tasks. Then, five different strategies are employed to expand the label word space for modifying prompts, and the integration of these strategies is used as the final verbalizer. The extensive experiments on Chinese Triage datasets demonstrate that our method achieved state-of-the-art performance.

缓解医疗压力:通过跨域文本分类的分类方法。
在大型综合医院,患者不知道到哪个临床科室挂号是一个普遍现象。虽然分诊护士可以帮助病人,但由于病人人数较多,他们必须排队几分钟才能咨询。最近,已经有一些努力将深度学习技术或预训练语言模型(plm)用于分类推荐。然而,这些方法可能有两个主要的局限性:(1)这些方法通常需要一定数量的标记或未标记的数据来进行模型训练,这些数据并不总是可访问的,并且获取成本很高。(2)这些方法在模型训练中没有考虑到语义特征结构的扭曲和类别可判别性的丧失。为了克服这些限制,在本研究中,我们提出了一种基于提示调优的跨域文本分类方法,该方法可以将患者关于其症状的问题或文本分类为几个给定的类别,从而为患者选择哪种诊室提供建议。具体来说,首先,根据不同的数据内容手工制作不同的提示模板,将源域信息嵌入到提示模板中,生成具有相似语义特征结构的另一个文本,用于执行分类任务。然后,采用五种不同的策略来扩展标签词空间来修改提示,并将这些策略整合成最终的语言修饰器。在中文分类分类数据集上的大量实验表明,我们的方法达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Computational Neuroscience
Frontiers in Computational Neuroscience MATHEMATICAL & COMPUTATIONAL BIOLOGY-NEUROSCIENCES
CiteScore
5.30
自引率
3.10%
发文量
166
审稿时长
6-12 weeks
期刊介绍: Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions. Also: comp neuro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信